mbed-os/targets/TARGET_ONSEMI/TARGET_NCS36510/serial_api.c

387 lines
12 KiB
C

/**
******************************************************************************
* @file Serial.c
* @brief Implementation of a 16C550 UART driver
* @internal
* @author ON Semiconductor
* $Rev: 0.1 $
* $Date: 2015-11-04 05:30:00 +0530 (Wed, 04 Nov 2015) $
******************************************************************************
* Copyright 2016 Semiconductor Components Industries LLC (d/b/a “ON Semiconductor”).
* All rights reserved. This software and/or documentation is licensed by ON Semiconductor
* under limited terms and conditions. The terms and conditions pertaining to the software
* and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
* (“ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software”) and
* if applicable the software license agreement. Do not use this software and/or
* documentation unless you have carefully read and you agree to the limited terms and
* conditions. By using this software and/or documentation, you agree to the limited
* terms and conditions.
*
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
* @endinternal
*
* @ingroup uart_16c550
*
*/
#if DEVICE_SERIAL
#include "serial_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "PeripheralPins.h"
#include "mbed_assert.h"
#include <string.h>
#include "uart_16c550.h"
#include "cmsis_nvic.h"
static IRQn_Type Irq;
uint32_t stdio_uart_inited = 0;
serial_t stdio_uart;
static uint32_t serial_irq_ids[UART_NUM] = {0};
static uart_irq_handler irq_handler;
static inline void uart_irq(uint8_t status, uint32_t index);
/** Opens UART device.
* @details
* Sets the necessary registers. Set to default Baud rate 115200, 8 bit, parity None and stop bit 1.
* The UART interrupt is enabled.
*
* @note The UART transmit interrupt is not enabled, because sending is controlled
* by the task.
*
* @param UartNum A UART device instance.
* @param options The options parameter containing the baud rate.
* @return True if opening was successful.
*/
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
uint16_t clockDivisor;
CrossbReg_t *CbRegOffSet;
PadReg_t *PadRegOffset;
//find which peripheral is associated with the rx and tx pins
uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
//check if the peripherals for each pin are the same or not
//returns the enum associated with the peripheral
//in the case of this target, the enum is the base address of the peripheral
obj->UARTREG = (Uart16C550Reg_pt) pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT(obj->UARTREG != (Uart16C550Reg_pt) NC);
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
/*TODO: Mac Lobdell - we should recommend using the instance method and not using base addresses as index */
if (obj->UARTREG == (Uart16C550Reg_pt)STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
/*TODO: determine if pullups are needed/recommended */
/* if (tx != NC) {
pin_mode(tx, PullUp);
}
if (rx != NC) {
pin_mode(rx, PullUp);
}
*/
/* Configure IOs to UART using cross bar, pad and GPIO settings */
if(obj->UARTREG == UART2REG) {
/* UART 2 */
CLOCK_ENABLE(CLOCK_UART2);
Irq = Uart2_IRQn;
} else if(obj->UARTREG == UART1REG) {
/* UART 1 */
CLOCK_ENABLE(CLOCK_UART1);
Irq = Uart1_IRQn;
} else {
MBED_ASSERT(False);
}
CLOCK_ENABLE(CLOCK_GPIO);
CLOCK_ENABLE(CLOCK_CROSSB);
CLOCK_ENABLE(CLOCK_PAD);
/*TODO: determine if tx and rx are used correctly in this case - this depends on the pin enum matching the position in the crossbar*/
/* Configure tx pin as UART */
CbRegOffSet = (CrossbReg_t*)(CROSSBREG_BASE + (tx * CROSS_REG_ADRS_BYTE_SIZE));
CbRegOffSet->DIOCTRL0 = CONFIGURE_AS_UART; /* tx pin as UART */
/* Configure rx pin as UART */
CbRegOffSet = (CrossbReg_t*)(CROSSBREG_BASE + (rx * CROSS_REG_ADRS_BYTE_SIZE));
CbRegOffSet->DIOCTRL0 = CONFIGURE_AS_UART; /* rx pin as UART */
/** - Set pad parameters, output drive strength, pull piece control, output drive type */
PadRegOffset = (PadReg_t*)(PADREG_BASE + (tx * PAD_REG_ADRS_BYTE_SIZE));
PadRegOffset->PADIO0.WORD = PAD_UART_TX; /* Pad setting for UART Tx */
PadRegOffset = (PadReg_t*)(PADREG_BASE + (rx * PAD_REG_ADRS_BYTE_SIZE));
PadRegOffset->PADIO0.WORD = PAD_UART_RX; /* Pad settings for UART Rx */
GPIOREG->W_OUT = (0x1 << tx); /* tx as OUT direction */
GPIOREG->W_IN = (0x1 << rx); /* rx as IN directon */
CLOCK_DISABLE(CLOCK_PAD);
CLOCK_DISABLE(CLOCK_CROSSB);
CLOCK_DISABLE(CLOCK_GPIO);
/* Set the divisor value. To do so, LCR[7] needs to be set to 1 in order to access the divisor registers.
* The right-shift of 4 is a division of 16, representing the oversampling rate. */
clockDivisor = (fClockGetPeriphClockfrequency() / UART_DEFAULT_BAUD) >> 4;
obj->UARTREG->LCR.WORD = 0x80;
obj->UARTREG->DLL = clockDivisor & 0xFF;
obj->UARTREG->DLM = clockDivisor >> 8;
/* Set the character width to 8 data bits, no parity, 1 stop bit. Write the entire line control register,
* effectively disabling the divisor latch. */
obj->UARTREG->LCR.WORD = 0x03;
/* Enable the FIFOs, reset the Tx and Rx FIFOs, set the Rx FIFO trigger level to 8 bytes, and set DMA Mode
to 1. */
obj->UARTREG->FCR.WORD = (FCR_RXFIFOTRIGGERLEVEL_8 | FCR_DMA_MODE_1 |
FCR_TXFIFO_RESET | FCR_RXFIFO_RESET | FCR_FIFO_ENABLE);
/* Make a copy of the current MSR to the SCR register. This is used from task space to determine the
* flow control state. */
obj->UARTREG->SCR = obj->UARTREG->MSR.WORD;
if((int)obj->UARTREG == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
NVIC_ClearPendingIRQ(Irq);
return;
}
/** Closes a UART device.
* @details
* Disables the UART interrupt.
*
* @param device The UART device to close.
*/
void serial_free(serial_t *obj)
{
NVIC_DisableIRQ(obj->IRQType);
}
void serial_baud(serial_t *obj, int baudrate)
{
/* Set the divisor value. To do so, LCR[7] needs to be set to 1 in order to access the divisor registers.
* The right-shift of 4 is a division of 16, representing the oversampling rate. */
uint16_t clockDivisor = (fClockGetPeriphClockfrequency() / baudrate) >> 4;
obj->UARTREG->LCR.BITS.DLAB = True;
obj->UARTREG->DLL = clockDivisor & 0xFF;
obj->UARTREG->DLM = clockDivisor >> 8;
obj->UARTREG->LCR.BITS.DLAB = False;
}
/*
Parity XX0 – Parity disabled; 001 – Odd Parity; 011 – Even Parity; 101 – Stick Parity, checked as 1; 111 – Stick Parity, checked as 0.
StopBit 0 – 1 stop bit; 1 – 2 stop bits.
DataLen 00 – 5 bits; 01 – 6 bits; 10 – 7 bits; 11 – 8 bits
*/
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
if(data_bits >= 5 && data_bits <= 8 && parity <= 7 && stop_bits >= 1 && stop_bits <= 2) {
if(parity == (SerialParity)0) {
parity = (SerialParity)0;
} else {
parity = (SerialParity)(parity + parity - 1) ;
}
obj->UARTREG->LCR.WORD |= ((((data_bits - 5) << UART_LCR_DATALEN_BIT_POS) |
(parity << UART_LCR_PARITY_BIT_POS) |
((stop_bits - 1) << UART_LCR_STPBIT_BIT_POS)) & 0x3F);
} else {
MBED_ASSERT(False);
}
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
/******************************************************
************* Internal IRQ functions ******************
*******************************************************/
void Uart1_Irq()
{
uint8_t active_irq = (uint8_t)(UART1REG->LSR.WORD) & 0xFF;
uint8_t irq_mask = 0;
if(UART1REG->IER.WORD & UART_IER_TX_EMPTY_MASK) { /*check if TX interrupt is enabled*/
irq_mask |= active_irq & UART_LSR_TX_EMPTY_MASK;
}
if(UART1REG->IER.WORD & UART_IER_RX_DATA_READY_MASK) { /*check if RX interrupt is enabled*/
irq_mask |= active_irq & UART_LSR_RX_DATA_READY_MASK;
}
//uart_irq((uint8_t)(UART1REG->LSR.WORD & 0xFF), 0);
uart_irq(active_irq & irq_mask, 0);
}
void Uart2_Irq()
{
uint8_t active_irq = (uint8_t)(UART2REG->LSR.WORD) & 0xFF;
uint8_t irq_mask = 0;
if(UART2REG->IER.WORD & UART_IER_TX_EMPTY_MASK) { /*check if TX interrupt is enabled*/
irq_mask |= active_irq & UART_LSR_TX_EMPTY_MASK;
}
if(UART2REG->IER.WORD & UART_IER_RX_DATA_READY_MASK) { /*check if RX interrupt is enabled*/
irq_mask |= active_irq & UART_LSR_RX_DATA_READY_MASK;
}
//uart_irq((uint8_t)(UART2REG->LSR.WORD & 0xFF), 1);
uart_irq(active_irq & irq_mask, 1);
}
static inline void uart_irq(uint8_t status, uint32_t index)
{
if (serial_irq_ids[index] != 0) {
if (status & UART_LSR_TX_EMPTY_MASK) {
irq_handler(serial_irq_ids[index], TxIrq);
}
if (status & UART_LSR_RX_DATA_READY_MASK) {
irq_handler(serial_irq_ids[index], RxIrq);
}
}
}
/******************************************************/
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t Vector = 0;
/* Check UART number & assign irq handler */
if(obj->UARTREG == UART1REG) {
/* UART 2 */
Vector = (uint32_t)&Uart1_Irq;
irq_n = Uart1_IRQn;
} else if(obj->UARTREG == UART2REG) {
/* UART 1 */
Vector = (uint32_t)&Uart2_Irq;
irq_n = Uart2_IRQn;
} else {
MBED_ASSERT(False);
}
/* Check IRQ type & enable/disable accordingly */
if(enable) {
/* Enable */
if(irq == RxIrq) {
/* Rx IRQ */
obj->UARTREG->FCR.BITS.RX_FIFO_TRIG = 0x0;
obj->UARTREG->IER.BITS.RX_DATA_INT = True;
} else if(irq == TxIrq) {
/* Tx IRQ */
obj->UARTREG->IER.BITS.TX_HOLD_INT = True;
} else {
MBED_ASSERT(False);
}
NVIC_SetVector(irq_n, Vector);
NVIC_EnableIRQ(irq_n);
} else {
/* Disable */
NVIC_DisableIRQ(irq_n);
if(irq == RxIrq) {
/* Rx IRQ */
obj->UARTREG->IER.BITS.RX_DATA_INT = False;
} else if(irq == TxIrq) {
/* Tx IRQ */
obj->UARTREG->IER.BITS.TX_HOLD_INT = False;
} else {
MBED_ASSERT(False);
}
}
}
int serial_getc(serial_t *obj)
{
uint8_t c;
while(!obj->UARTREG->LSR.BITS.READY); /* Wait for received data is ready */
c = obj->UARTREG->RBR & 0xFF; /* Get received character */
return c;
}
void serial_putc(serial_t *obj, int c)
{
while(!obj->UARTREG->LSR.BITS.TX_HOLD_EMPTY);/* Wait till THR is empty */
obj->UARTREG->THR = c; /* Transmit byte */
}
int serial_readable(serial_t *obj)
{
return obj->UARTREG->LSR.BITS.READY;
}
int serial_writable(serial_t *obj)
{
return obj->UARTREG->LSR.BITS.TX_HOLD_EMPTY;
}
void serial_clear(serial_t *obj)
{
/* Reset TX & RX FIFO */
obj->UARTREG->FCR.WORD |= ((True << UART_FCS_TX_FIFO_RST_BIT_POS) |
(True << UART_FCS_RX_FIFO_RST_BIT_POS));
}
void serial_break_set(serial_t *obj)
{
obj->UARTREG->LCR.BITS.BREAK = True;
}
void serial_break_clear(serial_t *obj)
{
obj->UARTREG->LCR.BITS.BREAK = False;
}
void serial_pinout_tx(PinName tx)
{
/* COnfigure PinNo to drive strength of 1, Push pull and pull none */
fPadIOCtrl(tx, 1, 0, 1);
}
/** Configure the serial for the flow control. It sets flow control in the hardware
* if a serial peripheral supports it, otherwise software emulation is used.
*
* @param obj The serial object
* @param type The type of the flow control. Look at the available FlowControl types.
* @param rxflow The TX pin name
* @param txflow The RX pin name
*/
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
/* TODO: This is an empty implementation for now.*/
}
#endif /* DEVICE_SERIAL */