mirror of https://github.com/ARMmbed/mbed-os.git
387 lines
12 KiB
C
387 lines
12 KiB
C
/**
|
|
******************************************************************************
|
|
* @file Serial.c
|
|
* @brief Implementation of a 16C550 UART driver
|
|
* @internal
|
|
* @author ON Semiconductor
|
|
* $Rev: 0.1 $
|
|
* $Date: 2015-11-04 05:30:00 +0530 (Wed, 04 Nov 2015) $
|
|
******************************************************************************
|
|
* Copyright 2016 Semiconductor Components Industries LLC (d/b/a “ON Semiconductor”).
|
|
* All rights reserved. This software and/or documentation is licensed by ON Semiconductor
|
|
* under limited terms and conditions. The terms and conditions pertaining to the software
|
|
* and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
|
|
* (“ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software”) and
|
|
* if applicable the software license agreement. Do not use this software and/or
|
|
* documentation unless you have carefully read and you agree to the limited terms and
|
|
* conditions. By using this software and/or documentation, you agree to the limited
|
|
* terms and conditions.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
|
|
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
|
|
* ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
|
|
* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
|
|
* @endinternal
|
|
*
|
|
* @ingroup uart_16c550
|
|
*
|
|
*/
|
|
#if DEVICE_SERIAL
|
|
|
|
#include "serial_api.h"
|
|
|
|
#include "cmsis.h"
|
|
#include "pinmap.h"
|
|
#include "PeripheralPins.h"
|
|
|
|
#include "mbed_assert.h"
|
|
#include <string.h>
|
|
#include "uart_16c550.h"
|
|
#include "cmsis_nvic.h"
|
|
|
|
static IRQn_Type Irq;
|
|
|
|
uint32_t stdio_uart_inited = 0;
|
|
serial_t stdio_uart;
|
|
|
|
static uint32_t serial_irq_ids[UART_NUM] = {0};
|
|
static uart_irq_handler irq_handler;
|
|
static inline void uart_irq(uint8_t status, uint32_t index);
|
|
|
|
|
|
/** Opens UART device.
|
|
* @details
|
|
* Sets the necessary registers. Set to default Baud rate 115200, 8 bit, parity None and stop bit 1.
|
|
* The UART interrupt is enabled.
|
|
*
|
|
* @note The UART transmit interrupt is not enabled, because sending is controlled
|
|
* by the task.
|
|
*
|
|
* @param UartNum A UART device instance.
|
|
* @param options The options parameter containing the baud rate.
|
|
* @return True if opening was successful.
|
|
*/
|
|
|
|
void serial_init(serial_t *obj, PinName tx, PinName rx)
|
|
{
|
|
uint16_t clockDivisor;
|
|
|
|
CrossbReg_t *CbRegOffSet;
|
|
PadReg_t *PadRegOffset;
|
|
|
|
//find which peripheral is associated with the rx and tx pins
|
|
uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
|
|
uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
|
|
//check if the peripherals for each pin are the same or not
|
|
//returns the enum associated with the peripheral
|
|
//in the case of this target, the enum is the base address of the peripheral
|
|
obj->UARTREG = (Uart16C550Reg_pt) pinmap_merge(uart_tx, uart_rx);
|
|
MBED_ASSERT(obj->UARTREG != (Uart16C550Reg_pt) NC);
|
|
|
|
pinmap_pinout(tx, PinMap_UART_TX);
|
|
pinmap_pinout(rx, PinMap_UART_RX);
|
|
|
|
/*TODO: Mac Lobdell - we should recommend using the instance method and not using base addresses as index */
|
|
|
|
if (obj->UARTREG == (Uart16C550Reg_pt)STDIO_UART) {
|
|
stdio_uart_inited = 1;
|
|
memcpy(&stdio_uart, obj, sizeof(serial_t));
|
|
}
|
|
/*TODO: determine if pullups are needed/recommended */
|
|
/* if (tx != NC) {
|
|
pin_mode(tx, PullUp);
|
|
}
|
|
if (rx != NC) {
|
|
pin_mode(rx, PullUp);
|
|
}
|
|
*/
|
|
/* Configure IOs to UART using cross bar, pad and GPIO settings */
|
|
|
|
if(obj->UARTREG == UART2REG) {
|
|
/* UART 2 */
|
|
CLOCK_ENABLE(CLOCK_UART2);
|
|
Irq = Uart2_IRQn;
|
|
} else if(obj->UARTREG == UART1REG) {
|
|
/* UART 1 */
|
|
CLOCK_ENABLE(CLOCK_UART1);
|
|
|
|
Irq = Uart1_IRQn;
|
|
} else {
|
|
MBED_ASSERT(False);
|
|
}
|
|
|
|
CLOCK_ENABLE(CLOCK_GPIO);
|
|
CLOCK_ENABLE(CLOCK_CROSSB);
|
|
CLOCK_ENABLE(CLOCK_PAD);
|
|
|
|
/*TODO: determine if tx and rx are used correctly in this case - this depends on the pin enum matching the position in the crossbar*/
|
|
|
|
/* Configure tx pin as UART */
|
|
CbRegOffSet = (CrossbReg_t*)(CROSSBREG_BASE + (tx * CROSS_REG_ADRS_BYTE_SIZE));
|
|
CbRegOffSet->DIOCTRL0 = CONFIGURE_AS_UART; /* tx pin as UART */
|
|
|
|
/* Configure rx pin as UART */
|
|
CbRegOffSet = (CrossbReg_t*)(CROSSBREG_BASE + (rx * CROSS_REG_ADRS_BYTE_SIZE));
|
|
CbRegOffSet->DIOCTRL0 = CONFIGURE_AS_UART; /* rx pin as UART */
|
|
|
|
/** - Set pad parameters, output drive strength, pull piece control, output drive type */
|
|
PadRegOffset = (PadReg_t*)(PADREG_BASE + (tx * PAD_REG_ADRS_BYTE_SIZE));
|
|
PadRegOffset->PADIO0.WORD = PAD_UART_TX; /* Pad setting for UART Tx */
|
|
|
|
PadRegOffset = (PadReg_t*)(PADREG_BASE + (rx * PAD_REG_ADRS_BYTE_SIZE));
|
|
PadRegOffset->PADIO0.WORD = PAD_UART_RX; /* Pad settings for UART Rx */
|
|
|
|
GPIOREG->W_OUT = (0x1 << tx); /* tx as OUT direction */
|
|
GPIOREG->W_IN = (0x1 << rx); /* rx as IN directon */
|
|
|
|
CLOCK_DISABLE(CLOCK_PAD);
|
|
CLOCK_DISABLE(CLOCK_CROSSB);
|
|
CLOCK_DISABLE(CLOCK_GPIO);
|
|
|
|
/* Set the divisor value. To do so, LCR[7] needs to be set to 1 in order to access the divisor registers.
|
|
* The right-shift of 4 is a division of 16, representing the oversampling rate. */
|
|
clockDivisor = (fClockGetPeriphClockfrequency() / UART_DEFAULT_BAUD) >> 4;
|
|
obj->UARTREG->LCR.WORD = 0x80;
|
|
obj->UARTREG->DLL = clockDivisor & 0xFF;
|
|
obj->UARTREG->DLM = clockDivisor >> 8;
|
|
|
|
/* Set the character width to 8 data bits, no parity, 1 stop bit. Write the entire line control register,
|
|
* effectively disabling the divisor latch. */
|
|
obj->UARTREG->LCR.WORD = 0x03;
|
|
|
|
/* Enable the FIFOs, reset the Tx and Rx FIFOs, set the Rx FIFO trigger level to 8 bytes, and set DMA Mode
|
|
to 1. */
|
|
obj->UARTREG->FCR.WORD = (FCR_RXFIFOTRIGGERLEVEL_8 | FCR_DMA_MODE_1 |
|
|
FCR_TXFIFO_RESET | FCR_RXFIFO_RESET | FCR_FIFO_ENABLE);
|
|
|
|
/* Make a copy of the current MSR to the SCR register. This is used from task space to determine the
|
|
* flow control state. */
|
|
obj->UARTREG->SCR = obj->UARTREG->MSR.WORD;
|
|
|
|
if((int)obj->UARTREG == STDIO_UART) {
|
|
stdio_uart_inited = 1;
|
|
memcpy(&stdio_uart, obj, sizeof(serial_t));
|
|
}
|
|
|
|
NVIC_ClearPendingIRQ(Irq);
|
|
|
|
return;
|
|
}
|
|
|
|
/** Closes a UART device.
|
|
* @details
|
|
* Disables the UART interrupt.
|
|
*
|
|
* @param device The UART device to close.
|
|
*/
|
|
void serial_free(serial_t *obj)
|
|
{
|
|
NVIC_DisableIRQ(obj->IRQType);
|
|
}
|
|
|
|
void serial_baud(serial_t *obj, int baudrate)
|
|
{
|
|
/* Set the divisor value. To do so, LCR[7] needs to be set to 1 in order to access the divisor registers.
|
|
* The right-shift of 4 is a division of 16, representing the oversampling rate. */
|
|
uint16_t clockDivisor = (fClockGetPeriphClockfrequency() / baudrate) >> 4;
|
|
|
|
obj->UARTREG->LCR.BITS.DLAB = True;
|
|
obj->UARTREG->DLL = clockDivisor & 0xFF;
|
|
obj->UARTREG->DLM = clockDivisor >> 8;
|
|
obj->UARTREG->LCR.BITS.DLAB = False;
|
|
}
|
|
|
|
/*
|
|
Parity XX0 – Parity disabled; 001 – Odd Parity; 011 – Even Parity; 101 – Stick Parity, checked as 1; 111 – Stick Parity, checked as 0.
|
|
StopBit 0 – 1 stop bit; 1 – 2 stop bits.
|
|
DataLen 00 – 5 bits; 01 – 6 bits; 10 – 7 bits; 11 – 8 bits
|
|
*/
|
|
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
|
|
{
|
|
if(data_bits >= 5 && data_bits <= 8 && parity <= 7 && stop_bits >= 1 && stop_bits <= 2) {
|
|
if(parity == (SerialParity)0) {
|
|
parity = (SerialParity)0;
|
|
} else {
|
|
parity = (SerialParity)(parity + parity - 1) ;
|
|
}
|
|
|
|
obj->UARTREG->LCR.WORD |= ((((data_bits - 5) << UART_LCR_DATALEN_BIT_POS) |
|
|
(parity << UART_LCR_PARITY_BIT_POS) |
|
|
((stop_bits - 1) << UART_LCR_STPBIT_BIT_POS)) & 0x3F);
|
|
} else {
|
|
MBED_ASSERT(False);
|
|
}
|
|
}
|
|
|
|
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
|
|
{
|
|
irq_handler = handler;
|
|
serial_irq_ids[obj->index] = id;
|
|
}
|
|
|
|
/******************************************************
|
|
************* Internal IRQ functions ******************
|
|
*******************************************************/
|
|
void Uart1_Irq()
|
|
{
|
|
uint8_t active_irq = (uint8_t)(UART1REG->LSR.WORD) & 0xFF;
|
|
uint8_t irq_mask = 0;
|
|
|
|
if(UART1REG->IER.WORD & UART_IER_TX_EMPTY_MASK) { /*check if TX interrupt is enabled*/
|
|
irq_mask |= active_irq & UART_LSR_TX_EMPTY_MASK;
|
|
}
|
|
|
|
if(UART1REG->IER.WORD & UART_IER_RX_DATA_READY_MASK) { /*check if RX interrupt is enabled*/
|
|
irq_mask |= active_irq & UART_LSR_RX_DATA_READY_MASK;
|
|
}
|
|
|
|
//uart_irq((uint8_t)(UART1REG->LSR.WORD & 0xFF), 0);
|
|
uart_irq(active_irq & irq_mask, 0);
|
|
}
|
|
|
|
void Uart2_Irq()
|
|
{
|
|
uint8_t active_irq = (uint8_t)(UART2REG->LSR.WORD) & 0xFF;
|
|
uint8_t irq_mask = 0;
|
|
|
|
if(UART2REG->IER.WORD & UART_IER_TX_EMPTY_MASK) { /*check if TX interrupt is enabled*/
|
|
irq_mask |= active_irq & UART_LSR_TX_EMPTY_MASK;
|
|
}
|
|
|
|
if(UART2REG->IER.WORD & UART_IER_RX_DATA_READY_MASK) { /*check if RX interrupt is enabled*/
|
|
irq_mask |= active_irq & UART_LSR_RX_DATA_READY_MASK;
|
|
}
|
|
|
|
//uart_irq((uint8_t)(UART2REG->LSR.WORD & 0xFF), 1);
|
|
uart_irq(active_irq & irq_mask, 1);
|
|
|
|
}
|
|
|
|
static inline void uart_irq(uint8_t status, uint32_t index)
|
|
{
|
|
if (serial_irq_ids[index] != 0) {
|
|
if (status & UART_LSR_TX_EMPTY_MASK) {
|
|
irq_handler(serial_irq_ids[index], TxIrq);
|
|
}
|
|
if (status & UART_LSR_RX_DATA_READY_MASK) {
|
|
irq_handler(serial_irq_ids[index], RxIrq);
|
|
}
|
|
}
|
|
}
|
|
/******************************************************/
|
|
|
|
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
|
|
{
|
|
IRQn_Type irq_n = (IRQn_Type)0;
|
|
uint32_t Vector = 0;
|
|
|
|
/* Check UART number & assign irq handler */
|
|
if(obj->UARTREG == UART1REG) {
|
|
/* UART 2 */
|
|
Vector = (uint32_t)&Uart1_Irq;
|
|
irq_n = Uart1_IRQn;
|
|
} else if(obj->UARTREG == UART2REG) {
|
|
/* UART 1 */
|
|
Vector = (uint32_t)&Uart2_Irq;
|
|
irq_n = Uart2_IRQn;
|
|
} else {
|
|
MBED_ASSERT(False);
|
|
}
|
|
|
|
/* Check IRQ type & enable/disable accordingly */
|
|
if(enable) {
|
|
/* Enable */
|
|
if(irq == RxIrq) {
|
|
/* Rx IRQ */
|
|
obj->UARTREG->FCR.BITS.RX_FIFO_TRIG = 0x0;
|
|
obj->UARTREG->IER.BITS.RX_DATA_INT = True;
|
|
} else if(irq == TxIrq) {
|
|
/* Tx IRQ */
|
|
obj->UARTREG->IER.BITS.TX_HOLD_INT = True;
|
|
} else {
|
|
MBED_ASSERT(False);
|
|
}
|
|
NVIC_SetVector(irq_n, Vector);
|
|
NVIC_EnableIRQ(irq_n);
|
|
} else {
|
|
/* Disable */
|
|
NVIC_DisableIRQ(irq_n);
|
|
if(irq == RxIrq) {
|
|
/* Rx IRQ */
|
|
obj->UARTREG->IER.BITS.RX_DATA_INT = False;
|
|
} else if(irq == TxIrq) {
|
|
/* Tx IRQ */
|
|
|
|
obj->UARTREG->IER.BITS.TX_HOLD_INT = False;
|
|
} else {
|
|
MBED_ASSERT(False);
|
|
}
|
|
}
|
|
}
|
|
|
|
int serial_getc(serial_t *obj)
|
|
{
|
|
uint8_t c;
|
|
|
|
while(!obj->UARTREG->LSR.BITS.READY); /* Wait for received data is ready */
|
|
c = obj->UARTREG->RBR & 0xFF; /* Get received character */
|
|
return c;
|
|
}
|
|
|
|
void serial_putc(serial_t *obj, int c)
|
|
{
|
|
|
|
while(!obj->UARTREG->LSR.BITS.TX_HOLD_EMPTY);/* Wait till THR is empty */
|
|
obj->UARTREG->THR = c; /* Transmit byte */
|
|
|
|
}
|
|
|
|
int serial_readable(serial_t *obj)
|
|
{
|
|
return obj->UARTREG->LSR.BITS.READY;
|
|
}
|
|
|
|
int serial_writable(serial_t *obj)
|
|
{
|
|
return obj->UARTREG->LSR.BITS.TX_HOLD_EMPTY;
|
|
}
|
|
|
|
void serial_clear(serial_t *obj)
|
|
{
|
|
/* Reset TX & RX FIFO */
|
|
obj->UARTREG->FCR.WORD |= ((True << UART_FCS_TX_FIFO_RST_BIT_POS) |
|
|
(True << UART_FCS_RX_FIFO_RST_BIT_POS));
|
|
}
|
|
|
|
void serial_break_set(serial_t *obj)
|
|
{
|
|
obj->UARTREG->LCR.BITS.BREAK = True;
|
|
}
|
|
|
|
void serial_break_clear(serial_t *obj)
|
|
{
|
|
obj->UARTREG->LCR.BITS.BREAK = False;
|
|
}
|
|
|
|
void serial_pinout_tx(PinName tx)
|
|
{
|
|
/* COnfigure PinNo to drive strength of 1, Push pull and pull none */
|
|
fPadIOCtrl(tx, 1, 0, 1);
|
|
}
|
|
|
|
/** Configure the serial for the flow control. It sets flow control in the hardware
|
|
* if a serial peripheral supports it, otherwise software emulation is used.
|
|
*
|
|
* @param obj The serial object
|
|
* @param type The type of the flow control. Look at the available FlowControl types.
|
|
* @param rxflow The TX pin name
|
|
* @param txflow The RX pin name
|
|
*/
|
|
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
|
|
{
|
|
/* TODO: This is an empty implementation for now.*/
|
|
}
|
|
|
|
#endif /* DEVICE_SERIAL */
|