mbed-os/targets/TARGET_ONSEMI/TARGET_NCS36510/rfAna.c

169 lines
7.2 KiB
C

/**
******************************************************************************
* @file rfAna.c
* @brief Implementation of rfAna hw module functions
* @internal
* @author ON Semiconductor
* $Rev: 3445 $
* $Date: 2015-06-22 13:51:24 +0530 (Mon, 22 Jun 2015) $
******************************************************************************
* Copyright 2016 Semiconductor Components Industries LLC (d/b/a “ON Semiconductor”).
* All rights reserved. This software and/or documentation is licensed by ON Semiconductor
* under limited terms and conditions. The terms and conditions pertaining to the software
* and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
* (“ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software”) and
* if applicable the software license agreement. Do not use this software and/or
* documentation unless you have carefully read and you agree to the limited terms and
* conditions. By using this software and/or documentation, you agree to the limited
* terms and conditions.
*
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
* @endinternal
*
* @ingroup rfAna
*
* @details
*
* <h1> Reference document(s) </h1>
*/
/*************************************************************************************************
* *
* Header files *
* *
*************************************************************************************************/
#include "memory_map.h"
#include "rfAna.h"
#include "clock.h"
/*************************************************************************************************
* *
* Global variables *
* *
*************************************************************************************************/
/** Rf channel and tx power lookup tables (constant)
* @details
*
* The rf channel table is used to program internal hardware register for different 15.4 rf channels.
* It has 16 entries corresponding to 16 15.4 channels.
* Entry 1 <-> Channel 11
* ...
* Entry 16 <-> Channel 26
*
* Each entry is compound of 4 items.
* Item 0: Rx Frequency integer divide portion
* Item 1: Rx Frequency fractional divide portion
* Item 2: Tx Frequency integer divide portion
* Item 3: Tx Frequency fractional divide portion
*
* The tx power table is used to program internal hardware register for different 15.4 tx power levels.
* It has 43 entries corresponding to tx power levels from -32dBm to +10dBm.
* Entry 1 <-> -32dB
* Entry 2 <-> -31dB
* ...
* Entry 2 <-> 9dB
* Entry 43 <-> +10dB
*
* Each entry is compound of 1 byte.
*/
// RR: Making high side injection changes to RevD
/** This rf LUT is built for high side injection, using low side injection
* would requiere to change this LUT. */
const uint32_t rfLut[16][4] = {{0x50,0x00D4A7,0x4B,0x00A000},
{0x50,0x017F52,0x4B,0x014001},
{0x51,0xFE29FB,0x4B,0x01E001},
{0x51,0xFED4A6,0x4C,0xFE7FFF},
{0x51,0xFF7F51,0x4C,0xFF1FFF},
{0x51,0x0029FC,0x4C,0xFFC000},
{0x51,0x00D4A7,0x4C,0x006000},
{0x51,0x017F52,0x4C,0x010001},
{0x52,0xFE29FB,0x4C,0x01A001},
{0x52,0xFED4A6,0x4D,0xFE3FFF},
{0x52,0xFF7F51,0x4D,0xFEDFFF},
{0x52,0x0029FC,0x4D,0xFF8000},
{0x52,0x00D4A7,0x4D,0x002000},
{0x52,0x017F52,0x4D,0x00C001},
{0x53,0xFE29FB,0x4D,0x016001},
{0x53,0xFED4A6,0x4E,0xFDFFFE}
};
const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm
0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm
0,0,0,0,0,0,0,0,1,2, // -19dBm to -10dBm
3,4,5,6,7,8,9,10,11,12, // -9dBm to 0dBm
13,14,15,16,17,18,19,20,20,20
}; // +1dBm to +10 dBm
/*************************************************************************************************
* *
* Functions *
* *
*************************************************************************************************/
void fRfAnaInit()
{
// Enable rfana clock
CLOCK_ENABLE(CLOCK_RFANA);
// Set PLL timing
RFANAREG->PLL_TIMING.BITS.PLL_RESET_TIME = 0x1E; // 30us
RFANAREG->PLL_TIMING.BITS.PLL_LOCK_TIME = 0x2F; // 47us
// Set other parameters
RFANAREG->RX_CONTROL.BITS.LNA_GAIN_MODE = 0x1; // High Gain mode
RFANAREG->RX_CONTROL.BITS.ADC_DITHER_MODE = 0x0; // Dither mode disabled
}
boolean fRfAnaIoctl (uint32_t request, void *argument)
{
uint8_t channel, txPower;
// Enable rfana clock (in case fRfAnaIoctl is used before call of fRfAnaInit)
CLOCK_ENABLE(CLOCK_RFANA);
switch(request) {
case SET_RF_CHANNEL:
channel = *(uint8_t*)argument;
// Set tx/rx integer/fractional divide portions
RFANAREG->TX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][3];
RFANAREG->TX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][2];
RFANAREG->RX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][1];
RFANAREG->RX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][0];
// Set tx/rx vco trims
/** REVD is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done
* from trims stored in dedicated registers available in digital.*/
if (channel < 19) {
RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
} else {
RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
}
break;
case SET_TX_POWER:
txPower = *(uint8_t*)argument;
// Set tx power register
if ((txPower & 0x20) == 0) {
RFANAREG->TX_POWER = (txPowerLut[txPower + 32] & 0xFF);
} else {
RFANAREG->TX_POWER = (txPowerLut[txPower - 32] & 0xFF);
}
break;
default:
return False;
}
return True;
}