mbed-os/targets/TARGET_ONSEMI/TARGET_NCS36510/ncs36510Init.c

282 lines
9.6 KiB
C

/**
***************************************************************************
* @file ncs36510_init.c
* @brief Initialization of Orion SoC
* @internal
* @author ON Semiconductor
* $Rev:
* $Date: $
******************************************************************************
* Copyright 2016 Semiconductor Components Industries LLC (d/b/a “ON Semiconductor”).
* All rights reserved. This software and/or documentation is licensed by ON Semiconductor
* under limited terms and conditions. The terms and conditions pertaining to the software
* and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
* (“ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software”) and
* if applicable the software license agreement. Do not use this software and/or
* documentation unless you have carefully read and you agree to the limited terms and
* conditions. By using this software and/or documentation, you agree to the limited
* terms and conditions.
*
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
* @endinternal
*
* @ingroup main
*
* @details
*/
/*************************************************************************************************
* *
* Header files *
* *
*************************************************************************************************/
#include "ncs36510Init.h"
void fPmuInit(void);
/**
* @brief
* Hardware trimming function
* This function copies trim codes from specific flash location
* where they are stored to proper hw registers.
*/
boolean fTrim()
{
/**- Check if trim values are present */
/**- If Trim data is present. Only trim if valid trim values are present. */
/**- Copy trims in registers */
if (TRIMREG->REVISION_CODE != 0xFFFFFFFF) {
/**- board specific clock trims may only be done when present, writing all 1's is not good */
if ((TRIMREG->TRIM_32K_EXT & 0xFFFF0000) != 0xFFFF0000) {
CLOCKREG->TRIM_32K_EXT = TRIMREG->TRIM_32K_EXT;
}
if ((TRIMREG->TRIM_32M_EXT & 0xFFFF0000) != 0xFFFF0000) {
CLOCKREG->TRIM_32M_EXT = TRIMREG->TRIM_32M_EXT;
}
MACHWREG->TX_LENGTH.BITS.TX_PRE_CHIPS = TRIMREG->TX_PRE_CHIPS;
RFANATRIMREG->TX_CHAIN_TRIM = TRIMREG->TX_CHAIN_TRIM;
RFANATRIMREG->PLL_VCO_TAP_LOCATION = TRIMREG->PLL_VCO_TAP_LOCATION;
RFANATRIMREG->PLL_TRIM.WORD = TRIMREG->PLL_TRIM;
/**- board specific RSSI trims may only be done when present, writing all 1's is not good */
if ((TRIMREG->RSSI_OFFSET & 0xFFFF0000) != 0xFFFF0000) {
DMDREG->DMD_CONTROL2.BITS.RSSI_OFFSET = TRIMREG->RSSI_OFFSET;
}
RFANATRIMREG->RX_CHAIN_TRIM = TRIMREG->RX_CHAIN_TRIM;
RFANATRIMREG->PMU_TRIM = TRIMREG->PMU_TRIM;
RANDREG->WR_SEED_RD_RAND = TRIMREG->WR_SEED_RD_RAND;
/** REVD boards are trimmed (in flash) with rx vco trims specific for high side injection,
* */
RFANATRIMREG->RX_VCO_TRIM_LUT1 = TRIMREG->RX_VCO_LUT1.WORD;;
RFANATRIMREG->RX_VCO_TRIM_LUT2 = TRIMREG->RX_VCO_LUT2.WORD;;
RFANATRIMREG->TX_VCO_TRIM_LUT1 = TRIMREG->TX_VCO_LUT1.WORD;;
RFANATRIMREG->TX_VCO_TRIM_LUT2 = TRIMREG->TX_VCO_LUT2.WORD;;
if ( TRIMREG->MAC_ADDR_LOW != 0xFFFFFFFF ) {
MACHWREG->LONG_ADDRESS_LOW = TRIMREG->MAC_ADDR_LOW;
}
if ( TRIMREG->MAC_ADDR_HIGH != 0xFFFFFFFF ) {
MACHWREG->LONG_ADDRESS_HIGH = TRIMREG->MAC_ADDR_HIGH;
}
return True;
} else {
/**- If no trim values are present, update the global status variable. */
return False;
}
}
/* See clock.h for documentation. */
void fClockInit()
{
/** Enable external 32MHz oscillator */
CLOCKREG->CCR.BITS.OSC_SEL = 1;
/** - Wait external 32MHz oscillator to be ready */
while(CLOCKREG->CSR.BITS.XTAL32M != 1) {} /* If you get stuck here, something is wrong with board or trim values */
/** Internal 32MHz calibration \n *//** - Enable internal 32MHz clock */
PMUREG->CONTROL.BITS.INT32M = 0;
/** - Wait 5 uSec for clock to stabilize */
volatile uint8_t Timer;
for(Timer = 0; Timer < 10; Timer++);
/** - Enable calibration */
CLOCKREG->CCR.BITS.CAL32M = True;
/** - Wait calibration to be completed */
while(CLOCKREG->CSR.BITS.CAL32MDONE == False); /* If you stuck here, issue with internal 32M calibration */
/** - Check calibration status */
while(CLOCKREG->CSR.BITS.CAL32MFAIL == True); /* If you stuck here, issue with internal 32M calibration */
/** - Power down internal 32MHz osc */
PMUREG->CONTROL.BITS.INT32M = 1;
/** Internal 32KHz calibration \n */ /** - Enable internal 32KHz clock */
PMUREG->CONTROL.BITS.INT32K = 0;
/** - Wait 5 uSec for clock to stabilize */
for(Timer = 0; Timer < 10; Timer++);
/** - Enable calibration */
CLOCKREG->CCR.BITS.CAL32K = True;
/** - Wait calibration to be completed */
while(CLOCKREG->CSR.BITS.DONE32K == False); /* If you stuck here, issue with internal 32K calibration */
/** - Check calibration status */
while(CLOCKREG->CSR.BITS.CAL32K == True); /* If you stuck here, issue with internal 32M calibration */
/** - Power down external 32KHz osc */
PMUREG->CONTROL.BITS.EXT32K = 1;
/** Disable all peripheral clocks by default */
CLOCKREG->PDIS.WORD = 0xFFFFFFFF;
/** Set core frequency */
CLOCKREG->FDIV = CPU_CLOCK_DIV - 1;
}
/* Initializes PMU module */
void fPmuInit()
{
/** Enable the clock for PMU peripheral device */
CLOCK_ENABLE(CLOCK_PMU);
/** Unset wakeup on pending (only enabled irq can wakeup) */
SCB->SCR &= ~SCB_SCR_SEVONPEND_Msk;
/** Unset auto sleep when returning from wakeup irq */
SCB->SCR &= ~SCB_SCR_SLEEPONEXIT_Msk;
/** Set regulator timings */
PMUREG->FVDD_TSETTLE = 160;
PMUREG->FVDD_TSTARTUP = 400;
/** Keep SRAMA & SRAMB powered in coma mode */
PMUREG->CONTROL.BITS.SRAMA = False;
PMUREG->CONTROL.BITS.SRAMB = False;
PMUREG->CONTROL.BITS.N1V1 = True; /* Enable ACTIVE mode switching regulator */
PMUREG->CONTROL.BITS.C1V1 = True; /* Enable COMA mode switching regulator */
/** Disable the clock for PMU peripheral device, all settings are done */
CLOCK_DISABLE(CLOCK_PMU);
}
/* See clock.h for documentation. */
uint32_t fClockGetPeriphClockfrequency()
{
return (CPU_CLOCK_ROOT_HZ / CPU_CLOCK_DIV);
}
/**
* @brief
* Hardware initialization function
* This function initializes hardware at application start up prior
* to other initializations or OS operations.
*/
static void fHwInit(void)
{
/* Trim register settings */
fTrim();
/* Clock setting */
/** - Initialize clock */
fClockInit();
/** - Initialize pmu */
fPmuInit();
/** Orion has 4 interrupt bits in interrupt priority register
* The lowest 4 bits are not used.
*
@verbatim
+-----+-----+-----+-----+-----+-----+-----+-----+
|bit 7|bit 6|bit 5|bit 4|bit 3|bit 2|bit 1|bit 0|
| | | | | 0 | 0 | 0 | 0 |
+-----+-----+-----+-----+-----+-----+-----+-----+
|
INTERRUPT PRIORITY | NOT IMPLEMENTED,
| read as 0
Valid priorities are 0x00, 0x10, 0x20, 0x30
0x40, 0x50, 0x60, 0x70
0x80, 0x90, 0xA0, 0xB0
0xC0, 0xD0, 0xE0, 0xF0
@endverbatim
* Lowest number is highest priority
*
*
* This range is defined by
* configKERNEL_INTERRUPT_PRIORITY (lowest)
* and configMAX_SYSCALL_INTERRUPT_PRIORITY (highest). All interrupt
* priorities need to fall in that range.
*
* To be future safe, the LSbits of the priority are set to 0xF.
* This wil lmake sure that if more interrupt bits are used, the
* priority is maintained.
*/
/** - Set IRQs priorities */
NVIC_SetPriority(Tim0_IRQn, 14);
NVIC_SetPriority(Tim1_IRQn, 14);
NVIC_SetPriority(Tim2_IRQn, 14);
NVIC_SetPriority(Uart1_IRQn,14);
NVIC_SetPriority(Spi_IRQn, 14);
NVIC_SetPriority(I2C_IRQn, 14);
NVIC_SetPriority(Gpio_IRQn, 14);
NVIC_SetPriority(Rtc_IRQn, 14);
NVIC_SetPriority(MacHw_IRQn, 13);
NVIC_SetPriority(Aes_IRQn, 13);
NVIC_SetPriority(Adc_IRQn, 14);
NVIC_SetPriority(ClockCal_IRQn, 14);
NVIC_SetPriority(Uart2_IRQn, 14);
NVIC_SetPriority(Dma_IRQn, 14);
NVIC_SetPriority(Uvi_IRQn, 14);
NVIC_SetPriority(DbgPwrUp_IRQn, 14);
NVIC_SetPriority(Spi2_IRQn, 14);
NVIC_SetPriority(I2C2_IRQn, 14);
}
extern void __Vectors;
void fNcs36510Init(void)
{
/** Setting this register is helping to debug imprecise bus access faults
* making them precise bus access faults. It has an impact on application
* performance. */
// SCnSCB->ACTLR |= SCnSCB_ACTLR_DISDEFWBUF_Msk;
/** This main function implements: */
/**- Disable all interrupts */
NVIC->ICER[0] = 0x1F;
/**- Clear all Pending interrupts */
NVIC->ICPR[0] = 0x1F;
/**- Clear all pending SV and systick */
SCB->ICSR = (uint32_t)0x0A000000;
SCB->VTOR = (uint32_t) (&__Vectors);
/**- Initialize hardware */
fHwInit();
}