mbed-os/targets/TARGET_Maxim/TARGET_MAX32620/spi_api.c

576 lines
19 KiB
C

/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include <string.h>
#include "mbed_assert.h"
#include "cmsis.h"
#include "spi_api.h"
#include "spi_multi_api.h"
#include "pinmap.h"
#include "ioman_regs.h"
#include "clkman_regs.h"
#include "PeripheralPins.h"
#define DEFAULT_CHAR 8
#define DEFAULT_MODE 0
#define DEFAULT_FREQ 1000000
// BYTE maximums for FIFO and page writes; FIFO depth spec'd as 16-bit words
#define SPI_MAX_BYTE_LEN (MXC_CFG_SPI_FIFO_DEPTH * 2)
#define SPI_MAX_PAGE_LEN (MXC_CFG_SPI_FIFO_DEPTH * 2)
#if DEVICE_SPI_ASYNCH
// Instance references for async transactions
static struct spi_s *state[MXC_CFG_SPI_INSTANCES] = {NULL};
#endif
//******************************************************************************
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
// Make sure pins are pointing to the same SPI instance
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl;
// Give the application the option to manually control Slave Select
if ((SPIName)spi_ssel != (SPIName)NC) {
spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
// Slave select is currently limited to slave select zero. If others are
// to be supported a function to map PinName to a value suitable for use
// in mstr_cfg.slave_sel will be required.
obj->spi.ssel = 0;
} else {
spi_cntl = spi_sclk;
obj->spi.ssel = -1;
}
SPIName spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((SPIName)spi != (SPIName)NC);
// Set the obj pointer to the proper SPI Instance
obj->spi.spi = (mxc_spi_regs_t*)spi;
// Set the SPI index and FIFOs
obj->spi.index = MXC_SPI_GET_IDX(obj->spi.spi);
obj->spi.fifo = MXC_SPI_GET_SPI_FIFO(obj->spi.index);
// Configure the pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
pinmap_pinout(ssel, PinMap_SPI_SSEL);
#if DEVICE_SPI_ASYNCH
// Configure default page size; size is known to async interface
obj->spi.spi->mstr_cfg = (obj->spi.spi->mstr_cfg & ~MXC_F_SPI_MSTR_CFG_PAGE_SIZE) | MXC_S_SPI_MSTR_CFG_PAGE_32B;
#endif
// Enable SPI and FIFOs
obj->spi.spi->gen_ctrl = (MXC_F_SPI_GEN_CTRL_SPI_MSTR_EN |
MXC_F_SPI_GEN_CTRL_TX_FIFO_EN |
MXC_F_SPI_GEN_CTRL_RX_FIFO_EN );
obj->spi.sclk = sclk; // save the sclk PinName in the object as a key for Quad SPI pin mapping lookup
spi_master_width(obj, 0); // default this for Single SPI communications
}
//******************************************************************************
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
// Check the validity of the inputs
MBED_ASSERT(((bits >= 1) && (bits <= 32)) && ((mode >= 0) && (mode <= 3)));
// Only supports master mode
MBED_ASSERT(!slave);
// Save formatting data
obj->spi.bits = bits;
// Set the mode
MXC_SET_FIELD(&obj->spi.spi->mstr_cfg, MXC_F_SPI_MSTR_CFG_SPI_MODE, mode << MXC_F_SPI_MSTR_CFG_SPI_MODE_POS);
}
//******************************************************************************
void spi_frequency(spi_t *obj, int hz)
{
// Maximum frequency is half the system frequency
MBED_ASSERT((unsigned int)hz <= (SystemCoreClock / 2));
unsigned clocks = ((SystemCoreClock / 2) / hz);
// Figure out the divider ratio
int clk_div = 1;
while (clk_div < 10) {
if (clocks < 0x10) {
break;
}
clk_div++;
clocks = clocks >> 1;
}
// Turn on the SPI clock
if (obj->spi.index == 0) {
MXC_CLKMAN->sys_clk_ctrl_11_spi0 = clk_div;
} else if (obj->spi.index == 1) {
MXC_CLKMAN->sys_clk_ctrl_12_spi1 = clk_div;
} else if (obj->spi.index == 2) {
MXC_CLKMAN->sys_clk_ctrl_13_spi2 = clk_div;
} else {
MBED_ASSERT(0);
}
// Set the number of clocks to hold sclk high and low
MXC_SET_FIELD(&obj->spi.spi->mstr_cfg, (MXC_F_SPI_MSTR_CFG_SCK_HI_CLK | MXC_F_SPI_MSTR_CFG_SCK_LO_CLK),
((clocks << MXC_F_SPI_MSTR_CFG_SCK_HI_CLK_POS) | (clocks << MXC_F_SPI_MSTR_CFG_SCK_LO_CLK_POS)));
}
//******************************************************************************
void spi_master_width(spi_t *obj, SpiWidth width)
{
// Save the width to be used in the SPI header
switch (width) {
case WidthSingle:
obj->spi.width = MXC_S_SPI_FIFO_WIDTH_SINGLE;
break;
case WidthDual:
obj->spi.width = MXC_S_SPI_FIFO_WIDTH_DUAL;
break;
case WidthQuad:
obj->spi.width = MXC_S_SPI_FIFO_WIDTH_QUAD;
// do pin mapping for SDIO[2] and SDIO[3] if Quad SPI is selected
pinmap_pinout(obj->spi.sclk, PinMap_SPI_QUAD);
break;
default:
MBED_ASSERT(0);
}
}
//******************************************************************************
/** Performs a master write or read transaction
*
* @param[in] obj The SPI peripheral to use for sending
* @param[in] value The value to send
* @param[in] direction Direction of the transaction, TX, RX or both
* @return Returns the value received during send
*/
static int spi_master_transaction(spi_t *obj, int value, uint32_t direction)
{
int bits;
// Create the header
uint16_t header = (direction | // direction based on SPI object
MXC_S_SPI_FIFO_UNIT_BITS | // unit size
((obj->spi.bits == 32) ? 0 : obj->spi.bits << MXC_F_SPI_FIFO_SIZE_POS) | // Number of units
obj->spi.width | // I/O width
((obj->spi.ssel == -1) ? 0 : 1 << MXC_F_SPI_FIFO_DASS_POS));
// Send the message header
*obj->spi.fifo->trans_16 = header;
// Send the data
if (obj->spi.bits < 17) {
*obj->spi.fifo->trans_16 = (uint16_t)value;
} else {
*obj->spi.fifo->trans_32 = (uint32_t)value;
}
// Get the data
bits = obj->spi.bits;
int result = 0;
int i = 0;
while (bits > 0) {
// Wait for data
while (((obj->spi.spi->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED)
>> MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED_POS) < 1);
result |= (*obj->spi.fifo->rslts_8 << (i++*8));
bits-=8;
}
return result;
}
//******************************************************************************
int spi_master_write(spi_t *obj, int value)
{
// set the fifo direction for full duplex, TX and RX simultaneously
return spi_master_transaction(obj, value, MXC_S_SPI_FIFO_DIR_BOTH);
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill) {
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
//******************************************************************************
int spi_master_read(spi_t *obj)
{
return spi_master_transaction(obj, 0xFF, MXC_S_SPI_FIFO_DIR_RX);
}
//******************************************************************************
// spi_busy() is part of the synchronous API, it is not used by the asynchronous API.
int spi_busy(spi_t *obj)
{
return !(obj->spi.spi->intfl & MXC_F_SPI_INTFL_TX_READY);
}
#if DEVICE_SPI_ASYNCH
//******************************************************************************
static uint32_t spi_master_read_rxfifo(mxc_spi_regs_t *spim, mxc_spi_fifo_regs_t *fifo, uint8_t *data, uint32_t len)
{
uint32_t num = 0;
uint32_t avail = ((spim->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED) >> MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED_POS);
// Get data from the RXFIFO
while (avail && (len - num)) {
// Save data from the RXFIFO
if ((avail >= 4) && ((len - num) >= 4)) {
uint32_t temp = *fifo->rslts_32;
data[num++] = temp;
data[num++] = temp >> 8;
data[num++] = temp >> 16;
data[num++] = temp >> 24;
avail -= 4;
} else if ((avail >= 2) && ((len - num) >= 2)) {
uint16_t temp = *fifo->rslts_16;
data[num++] = temp;
data[num++] = temp >> 8;
avail -= 2;
} else {
data[num++] = *fifo->rslts_8;
avail--;
}
// Check to see if there is more data in the FIFO
if (avail == 0) {
avail = ((spim->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED) >> MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED_POS);
}
}
return num;
}
//******************************************************************************
static uint32_t spi_master_transfer_handler(spi_t *obj)
{
uint8_t read;
uint8_t write;
uint16_t header;
uint32_t pages;
uint32_t bytes;
uint32_t inten;
unsigned remain;
unsigned bytes_read;
unsigned head_rem_temp;
unsigned avail;
struct spi_s *req = &obj->spi;
mxc_spi_regs_t *spim = obj->spi.spi;
mxc_spi_fifo_regs_t *fifo = obj->spi.fifo;
inten = 0;
// Figure out if we're reading
read = (req->rx_data != NULL) ? 1 : 0;
// Figure out if we're writing
write = (req->tx_data != NULL) ? 1 : 0;
// Read byte from the FIFO if we are reading
if (read) {
// Read all of the data in the RXFIFO, or until we don't need anymore
bytes_read = spi_master_read_rxfifo(spim, fifo, &req->rx_data[req->read_num], (req->len - req->read_num));
req->read_num += bytes_read;
// Adjust head_rem if we are only reading
if (!write && (req->head_rem > 0)) {
req->head_rem -= bytes_read;
}
// Figure out how many bytes we have left to read
if (req->head_rem > 0) {
remain = req->head_rem;
} else {
remain = req->len - req->read_num;
}
if (remain) {
// Set the RX interrupts
if (remain > MXC_CFG_SPI_FIFO_DEPTH) {
spim->fifo_ctrl = ((spim->fifo_ctrl & ~MXC_F_SPI_FIFO_CTRL_RX_FIFO_AF_LVL) |
((MXC_CFG_SPI_FIFO_DEPTH - 2) << MXC_F_SPI_FIFO_CTRL_RX_FIFO_AF_LVL_POS));
} else {
spim->fifo_ctrl = ((spim->fifo_ctrl & ~MXC_F_SPI_FIFO_CTRL_RX_FIFO_AF_LVL) |
((remain - 1) << MXC_F_SPI_FIFO_CTRL_RX_FIFO_AF_LVL_POS));
}
inten |= MXC_F_SPI_INTEN_RX_FIFO_AF;
}
}
// Figure out how many bytes we have left to send headers for
if (write) {
remain = req->len - req->write_num;
} else {
remain = req->len - req->read_num;
}
// See if we need to send a new header
if ((req->head_rem <= 0) && remain) {
// Set the transaction configuration in the header
header = ((write | (read << 1)) << MXC_F_SPI_FIFO_DIR_POS) | (req->width << MXC_F_SPI_FIFO_WIDTH_POS);
if (remain >= SPI_MAX_BYTE_LEN) {
// Send a 32 byte header
if (remain == SPI_MAX_BYTE_LEN) {
header |= (MXC_S_SPI_FIFO_UNIT_BYTES | MXC_F_SPI_FIFO_DASS);
// Save the number of bytes we need to write to the FIFO
bytes = SPI_MAX_BYTE_LEN;
} else {
// Send in increments of 32 byte pages
header |= MXC_S_SPI_FIFO_UNIT_PAGES;
pages = remain / SPI_MAX_PAGE_LEN;
if (pages >= 32) {
// 0 maps to 32 in the header
bytes = 32 * SPI_MAX_PAGE_LEN;
} else {
header |= (pages << MXC_F_SPI_FIFO_SIZE_POS);
bytes = pages * SPI_MAX_PAGE_LEN;
}
// Check if this is the last header we will send
if ((remain - bytes) == 0) {
header |= MXC_F_SPI_FIFO_DASS;
}
}
fifo->trans_16[0] = header;
// Save the number of bytes we need to write to the FIFO
req->head_rem = bytes;
} else {
// Send final header with the number of bytes remaining and de-assert the SS at the end of the transaction
header |= (MXC_S_SPI_FIFO_UNIT_BYTES | (remain << MXC_F_SPI_FIFO_SIZE_POS) | MXC_F_SPI_FIFO_DASS);
fifo->trans_16[0] = header;
req->head_rem = remain;
}
}
// Put data into the FIFO if we are writing
remain = req->len - req->write_num;
head_rem_temp = req->head_rem;
if (write && head_rem_temp) {
// Fill the FIFO
avail = (MXC_CFG_SPI_FIFO_DEPTH - ((spim->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_TX_FIFO_USED) >> MXC_F_SPI_FIFO_CTRL_TX_FIFO_USED_POS));
// Use memcpy for everything except the last byte in odd length transactions
while ((avail >= 2) && (head_rem_temp >= 2)) {
unsigned length;
if (head_rem_temp < avail) {
length = head_rem_temp;
} else {
length = avail;
}
// Only memcpy even numbers
length = ((length / 2) * 2);
memcpy((void*)fifo->trans_32, &(req->tx_data[req->write_num]), length);
head_rem_temp -= length;
req->write_num += length;
avail = (MXC_CFG_SPI_FIFO_DEPTH - ((spim->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_TX_FIFO_USED) >> MXC_F_SPI_FIFO_CTRL_TX_FIFO_USED_POS));
}
// Copy the last byte and pad with 0xF0 to not get confused as header
if ((avail >= 1) && (head_rem_temp == 1)) {
// Write the last byte
fifo->trans_16[0] = (0xF000 | req->tx_data[req->write_num]);
avail -= 1;
req->write_num += 1;
head_rem_temp -= 1;
}
req->head_rem = head_rem_temp;
remain = req->len - req->write_num;
// Set the TX interrupts
if (remain) {
// Set the TX FIFO almost empty interrupt if we have to refill
spim->fifo_ctrl = ((spim->fifo_ctrl & ~MXC_F_SPI_FIFO_CTRL_TX_FIFO_AE_LVL) |
((MXC_CFG_SPI_FIFO_DEPTH - 2) << MXC_F_SPI_FIFO_CTRL_TX_FIFO_AE_LVL_POS));
inten |= MXC_F_SPI_INTEN_TX_FIFO_AE;
}
}
// Check to see if we've finished reading and writing
if (((read && (req->read_num == req->len)) || !read) &&
((req->write_num == req->len) || !write)) {
// Disable interrupts
spim->inten = 0;
}
// Enable the SPIM interrupts
return inten;
}
//******************************************************************************
void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
MBED_ASSERT(tx_length == rx_length);
MBED_ASSERT(bit_width == obj->spi.bits);
// Save object reference for callback
state[obj->spi.index] = &obj->spi;
// Initialize request info
obj->spi.tx_data = tx;
obj->spi.rx_data = rx;
obj->spi.len = tx_length;
obj->spi.callback = (void(*)())handler;
obj->spi.event = event;
// Clear transfer state
obj->spi.read_num = 0;
obj->spi.write_num = 0;
obj->spi.head_rem = 0;
NVIC_EnableIRQ(MXC_SPI_GET_IRQ(obj->spi.index));
obj->spi.spi->inten = spi_master_transfer_handler(obj);
}
//******************************************************************************
uint32_t spi_irq_handler_asynch(spi_t *obj)
{
mxc_spi_regs_t *spim = obj->spi.spi;
uint32_t flags;
// Clear the interrupt flags
spim->inten = 0;
flags = spim->intfl;
spim->intfl = flags;
// Figure out if this SPIM has an active request
if (flags) {
if ((spim->inten = spi_master_transfer_handler(obj)) != 0) {
return 0;
}
}
state[obj->spi.index] = NULL;
return SPI_EVENT_COMPLETE;
}
//******************************************************************************
uint8_t spi_active(spi_t *obj)
{
mxc_spi_regs_t *spim = obj->spi.spi;
// Check to see if there are any ongoing transactions
if ((state[obj->spi.index] == NULL) &&
!(spim->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_TX_FIFO_USED)) {
return 0;
}
return 1;
}
//******************************************************************************
void spi_abort_asynch(spi_t *obj)
{
mxc_spi_regs_t *spim = obj->spi.spi;
// Disable interrupts, clear the flags
spim->inten = 0;
spim->intfl = spim->intfl;
// Reset the SPIM to cancel the on ongoing transaction
spim->gen_ctrl &= ~(MXC_F_SPI_GEN_CTRL_SPI_MSTR_EN);
spim->gen_ctrl |= (MXC_F_SPI_GEN_CTRL_SPI_MSTR_EN);
state[obj->spi.index] = NULL;
}
//******************************************************************************
static void SPI_IRQHandler(int spim_num)
{
if (state[spim_num] != NULL) {
if (state[spim_num]->callback != NULL) {
state[spim_num]->callback();
return;
}
}
mxc_spi_regs_t *spim = MXC_SPI_GET_SPI(spim_num);
spim->inten = 0;
}
//******************************************************************************
void SPI0_IRQHandler(void) { SPI_IRQHandler(0); }
void SPI1_IRQHandler(void) { SPI_IRQHandler(1); }
void SPI2_IRQHandler(void) { SPI_IRQHandler(2); }
#endif