mbed-os/targets/TARGET_Maxim/TARGET_MAX32620/rtc_api.c

314 lines
10 KiB
C

/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include "rtc_api.h"
#include "lp_ticker_api.h"
#include "cmsis.h"
#include "rtc_regs.h"
#include "pwrseq_regs.h"
#include "clkman_regs.h"
/**
* Defines clock divider for 4096Hz input clock.
*/
typedef enum {
/** (4kHz) divide input clock by 2^0 = 1 */
MXC_E_RTC_PRESCALE_DIV_2_0 = 0,
/** (2kHz) divide input clock by 2^1 = 2 */
MXC_E_RTC_PRESCALE_DIV_2_1,
/** (1kHz) divide input clock by 2^2 = 4 */
MXC_E_RTC_PRESCALE_DIV_2_2,
/** (512Hz) divide input clock by 2^3 = 8 */
MXC_E_RTC_PRESCALE_DIV_2_3,
/** (256Hz) divide input clock by 2^4 = 16 */
MXC_E_RTC_PRESCALE_DIV_2_4,
/** (128Hz) divide input clock by 2^5 = 32 */
MXC_E_RTC_PRESCALE_DIV_2_5,
/** (64Hz) divide input clock by 2^6 = 64 */
MXC_E_RTC_PRESCALE_DIV_2_6,
/** (32Hz) divide input clock by 2^7 = 128 */
MXC_E_RTC_PRESCALE_DIV_2_7,
/** (16Hz) divide input clock by 2^8 = 256 */
MXC_E_RTC_PRESCALE_DIV_2_8,
/** (8Hz) divide input clock by 2^9 = 512 */
MXC_E_RTC_PRESCALE_DIV_2_9,
/** (4Hz) divide input clock by 2^10 = 1024 */
MXC_E_RTC_PRESCALE_DIV_2_10,
/** (2Hz) divide input clock by 2^11 = 2048 */
MXC_E_RTC_PRESCALE_DIV_2_11,
/** (1Hz) divide input clock by 2^12 = 4096 */
MXC_E_RTC_PRESCALE_DIV_2_12,
} mxc_rtc_prescale_t;
#define PRESCALE_VAL MXC_E_RTC_PRESCALE_DIV_2_0 // Set the divider for the 4kHz clock
#define SHIFT_AMT (MXC_E_RTC_PRESCALE_DIV_2_12 - PRESCALE_VAL)
#define WINDOW 1000
static int rtc_inited = 0;
static volatile uint32_t overflow_cnt = 0;
static uint64_t rtc_read64(void);
//******************************************************************************
static void overflow_handler(void)
{
MXC_RTCTMR->flags |= MXC_F_RTC_FLAGS_ASYNC_CLR_FLAGS;
overflow_cnt++;
// Wait for pending transactions
while (MXC_RTCTMR->ctrl & MXC_F_RTC_CTRL_PENDING);
}
//******************************************************************************
void rtc_init(void)
{
if (rtc_inited) {
return;
}
rtc_inited = 1;
overflow_cnt = 0;
// Enable the clock to the synchronizer
MXC_CLKMAN->sys_clk_ctrl_1_sync = MXC_S_CLKMAN_CLK_SCALE_DIV_1;
// Enable the clock to the RTC
MXC_PWRSEQ->reg0 |= MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN;
// Prepare interrupt handlers
NVIC_SetVector(RTC0_IRQn, (uint32_t)lp_ticker_irq_handler);
NVIC_EnableIRQ(RTC0_IRQn);
NVIC_SetVector(RTC3_IRQn, (uint32_t)overflow_handler);
NVIC_EnableIRQ(RTC3_IRQn);
// Enable wakeup on RTC rollover
MXC_PWRSEQ->msk_flags &= ~MXC_F_PWRSEQ_MSK_FLAGS_RTC_ROLLOVER;
/* RTC registers are only reset on a power cycle. Do not reconfigure the RTC
* if it is already running.
*/
if (!(MXC_RTCTMR->ctrl & MXC_F_RTC_CTRL_ENABLE)) {
// Set the clock divider
MXC_RTCTMR->prescale = PRESCALE_VAL;
// Enable the overflow interrupt
MXC_RTCTMR->inten |= MXC_F_RTC_FLAGS_OVERFLOW;
// Restart the timer from 0
MXC_RTCTMR->timer = 0;
// Enable the RTC
MXC_RTCTMR->ctrl |= MXC_F_RTC_CTRL_ENABLE;
}
}
//******************************************************************************
void lp_ticker_init(void)
{
rtc_init();
}
//******************************************************************************
void rtc_free(void)
{
if (MXC_RTCTMR->ctrl & MXC_F_RTC_CTRL_ENABLE) {
// Clear and disable RTC
MXC_RTCTMR->ctrl |= MXC_F_RTC_CTRL_CLEAR;
MXC_RTCTMR->ctrl &= ~MXC_F_RTC_CTRL_ENABLE;
// Wait for pending transactions
while (MXC_RTCTMR->ctrl & MXC_F_RTC_CTRL_PENDING);
}
// Disable the clock to the RTC
MXC_PWRSEQ->reg0 &= ~(MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN | MXC_F_PWRSEQ_REG0_PWR_RTCEN_SLP);
// Disable the clock to the synchronizer
MXC_CLKMAN->sys_clk_ctrl_1_sync = MXC_S_CLKMAN_CLK_SCALE_DISABLED;
}
//******************************************************************************
int rtc_isenabled(void)
{
return (MXC_RTCTMR->ctrl & MXC_F_RTC_CTRL_ENABLE);
}
//******************************************************************************
time_t rtc_read(void)
{
uint32_t ovf_cnt_1, ovf_cnt_2, timer_cnt;
uint32_t ovf1, ovf2;
// Make sure RTC is setup before trying to read
if (!rtc_inited) {
rtc_init();
}
// Ensure coherency between overflow_cnt and timer
do {
ovf_cnt_1 = overflow_cnt;
ovf1 = MXC_RTCTMR->flags & MXC_F_RTC_FLAGS_OVERFLOW;
timer_cnt = MXC_RTCTMR->timer;
ovf2 = MXC_RTCTMR->flags & MXC_F_RTC_FLAGS_OVERFLOW;
ovf_cnt_2 = overflow_cnt;
} while ((ovf_cnt_1 != ovf_cnt_2) || (ovf1 != ovf2));
// Account for an unserviced interrupt
if (ovf1) {
ovf_cnt_1++;
}
return (timer_cnt >> SHIFT_AMT) + (ovf_cnt_1 << (32 - SHIFT_AMT));
}
//******************************************************************************
static uint64_t rtc_read64(void)
{
uint32_t ovf_cnt_1, ovf_cnt_2, timer_cnt;
uint32_t ovf1, ovf2;
uint64_t current_us;
// Make sure RTC is setup before trying to read
if (!rtc_inited) {
rtc_init();
}
// Ensure coherency between overflow_cnt and timer
do {
ovf_cnt_1 = overflow_cnt;
ovf1 = MXC_RTCTMR->flags & MXC_F_RTC_FLAGS_OVERFLOW;
timer_cnt = MXC_RTCTMR->timer;
ovf2 = MXC_RTCTMR->flags & MXC_F_RTC_FLAGS_OVERFLOW;
ovf_cnt_2 = overflow_cnt;
} while ((ovf_cnt_1 != ovf_cnt_2) || (ovf1 != ovf2));
// Account for an unserviced interrupt
if (ovf1) {
ovf_cnt_1++;
}
current_us = (((uint64_t)timer_cnt * 1000000) >> SHIFT_AMT) + (((uint64_t)ovf_cnt_1 * 1000000) << (32 - SHIFT_AMT));
return current_us;
}
//******************************************************************************
void rtc_write(time_t t)
{
// Make sure RTC is setup before accessing
if (!rtc_inited) {
rtc_init();
}
MXC_RTCTMR->ctrl &= ~MXC_F_RTC_CTRL_ENABLE; // disable the timer while updating
MXC_RTCTMR->timer = t << SHIFT_AMT;
overflow_cnt = t >> (32 - SHIFT_AMT);
MXC_RTCTMR->ctrl |= MXC_F_RTC_CTRL_ENABLE; // enable the timer while updating
}
//******************************************************************************
void lp_ticker_set_interrupt(timestamp_t timestamp)
{
uint32_t comp_value;
uint64_t curr_ts64;
uint64_t ts64;
// Note: interrupts are disabled before this function is called.
// Disable the alarm while it is prepared
MXC_RTCTMR->inten &= ~MXC_F_RTC_INTEN_COMP0;
curr_ts64 = rtc_read64();
ts64 = (uint64_t)timestamp | (curr_ts64 & 0xFFFFFFFF00000000ULL);
// If this event is older than a recent window, it must be in the future
if ((ts64 < (curr_ts64 - WINDOW)) && ((curr_ts64 - WINDOW) < curr_ts64)) {
ts64 += 0x100000000ULL;
}
uint32_t timer = MXC_RTCTMR->timer;
if (ts64 <= curr_ts64) {
// This event has already occurred. Set the alarm to expire immediately.
comp_value = timer + 1;
} else {
comp_value = (ts64 << SHIFT_AMT) / 1000000;
}
// Ensure that the compare value is far enough in the future to guarantee the interrupt occurs.
if ((comp_value < (timer + 2)) && (comp_value > (timer - 10))) {
comp_value = timer + 2;
}
MXC_RTCTMR->comp[0] = comp_value;
MXC_RTCTMR->flags |= MXC_F_RTC_FLAGS_ASYNC_CLR_FLAGS;
MXC_RTCTMR->inten |= MXC_F_RTC_INTEN_COMP0; // enable the interrupt
// Enable wakeup from RTC
MXC_PWRSEQ->msk_flags &= ~MXC_F_PWRSEQ_MSK_FLAGS_RTC_CMPR0;
// Wait for pending transactions
while(MXC_RTCTMR->ctrl & MXC_F_RTC_CTRL_PENDING);
}
void lp_ticker_fire_interrupt(void)
{
NVIC_SetPendingIRQ(RTC0_IRQn);
}
//******************************************************************************
inline void lp_ticker_disable_interrupt(void)
{
MXC_RTCTMR->inten &= ~MXC_F_RTC_INTEN_COMP0;
}
//******************************************************************************
inline void lp_ticker_clear_interrupt(void)
{
MXC_RTCTMR->flags |= MXC_F_RTC_FLAGS_ASYNC_CLR_FLAGS;
// Wait for pending transactions
while (MXC_RTCTMR->ctrl & MXC_F_RTC_CTRL_PENDING);
}
//******************************************************************************
inline uint32_t lp_ticker_read(void)
{
return rtc_read64();
}
void lp_ticker_free(void)
{
}