mbed-os/features/storage/blockdevice/MBRBlockDevice.cpp

448 lines
11 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "MBRBlockDevice.h"
#include "platform/mbed_critical.h"
#include "platform/mbed_toolchain.h"
#include "platform/mbed_assert.h"
#include <algorithm>
#include <string.h>
namespace mbed {
// On disk structures, all entries are little endian
MBED_PACKED(struct) mbr_entry {
uint8_t status;
uint8_t chs_start[3];
uint8_t type;
uint8_t chs_stop[3];
uint32_t lba_offset;
uint32_t lba_size;
};
MBED_PACKED(struct) mbr_table {
struct mbr_entry entries[4];
uint8_t signature[2];
};
// Little-endian conversion, should compile to noop
// if system is little-endian
static inline uint32_t tole32(uint32_t a)
{
union {
uint32_t u32;
uint8_t u8[4];
} w;
w.u8[0] = a >> 0;
w.u8[1] = a >> 8;
w.u8[2] = a >> 16;
w.u8[3] = a >> 24;
return w.u32;
}
static inline uint32_t fromle32(uint32_t a)
{
return tole32(a);
}
static void tochs(uint32_t lba, uint8_t chs[3])
{
uint32_t sector = std::min<uint32_t>(lba, 0xfffffd) + 1;
chs[0] = (sector >> 6) & 0xff;
chs[1] = ((sector >> 0) & 0x3f) | ((sector >> 16) & 0xc0);
chs[2] = (sector >> 14) & 0xff;
}
// Partition after address are turned into absolute
// addresses, assumes bd is initialized
static int partition_absolute(
BlockDevice *bd, int part, uint8_t type,
bd_size_t offset, bd_size_t size)
{
// Allocate smallest buffer necessary to write MBR
uint32_t buffer_size = std::max<uint32_t>(bd->get_program_size(), sizeof(struct mbr_table));
// Prevent alignment issues
if (buffer_size % bd->get_program_size() != 0) {
buffer_size += bd->get_program_size() - (buffer_size % bd->get_program_size());
}
uint8_t *buffer = new uint8_t[buffer_size];
// Check for existing MBR
int err = bd->read(buffer, 512 - buffer_size, buffer_size);
if (err) {
delete[] buffer;
return err;
}
uint32_t table_start_offset = buffer_size - sizeof(struct mbr_table);
struct mbr_table *table = reinterpret_cast<struct mbr_table *>(
&buffer[table_start_offset]);
if (table->signature[0] != 0x55 || table->signature[1] != 0xaa) {
// Setup default values for MBR
table->signature[0] = 0x55;
table->signature[1] = 0xaa;
memset(table->entries, 0, sizeof(table->entries));
}
// For Windows-formatted SD card, it is not partitioned (no MBR), but its PBR has the
// same boot signature (0xaa55) as MBR. We would easily mis-recognize this SD card has valid
// partitions if we only check partition type. We add check by only accepting 0x00 (inactive)
// /0x80 (active) for valid partition status.
for (int i = 1; i <= 4; i++) {
if (table->entries[i - 1].status != 0x00 &&
table->entries[i - 1].status != 0x80) {
memset(table->entries, 0, sizeof(table->entries));
break;
}
}
// Setup new partition
MBED_ASSERT(part >= 1 && part <= 4);
table->entries[part - 1].status = 0x00; // inactive (not bootable)
table->entries[part - 1].type = type;
// lba dimensions
MBED_ASSERT(bd->is_valid_erase(offset, size));
uint32_t sector = std::max<uint32_t>(bd->get_erase_size(), 512);
uint32_t lba_offset = offset / sector;
uint32_t lba_size = size / sector;
table->entries[part - 1].lba_offset = tole32(lba_offset);
table->entries[part - 1].lba_size = tole32(lba_size);
// chs dimensions
tochs(lba_offset, table->entries[part - 1].chs_start);
tochs(lba_offset + lba_size - 1, table->entries[part - 1].chs_stop);
// Check that we don't overlap other entries
for (int i = 1; i <= 4; i++) {
if (i != part && table->entries[i - 1].type != 0x00) {
uint32_t neighbor_lba_offset = fromle32(table->entries[i - 1].lba_offset);
uint32_t neighbor_lba_size = fromle32(table->entries[i - 1].lba_size);
MBED_ASSERT(
(lba_offset >= neighbor_lba_offset + neighbor_lba_size) ||
(lba_offset + lba_size <= neighbor_lba_offset));
(void)neighbor_lba_offset;
(void)neighbor_lba_size;
}
}
// As the erase operation may do nothing, erase remainder of the buffer, to eradicate
// any remaining programmed data (such as previously programmed file systems).
if (table_start_offset > 0) {
memset(buffer, 0xFF, table_start_offset);
}
if (table_start_offset + sizeof(struct mbr_table) < buffer_size) {
memset(buffer + table_start_offset + sizeof(struct mbr_table), 0xFF,
buffer_size - (table_start_offset + sizeof(struct mbr_table)));
}
// Write out MBR
err = bd->erase(0, bd->get_erase_size());
if (err) {
delete[] buffer;
return err;
}
err = bd->program(buffer, 512 - buffer_size, buffer_size);
delete[] buffer;
return err;
}
int MBRBlockDevice::partition(BlockDevice *bd, int part, uint8_t type, bd_addr_t start)
{
int err = bd->init();
if (err) {
return err;
}
// Calculate dimensions
bd_size_t offset = ((int64_t)start < 0) ? -start : start;
bd_size_t size = bd->size();
if (offset < 512) {
offset += std::max<uint32_t>(bd->get_erase_size(), 512);
}
size -= offset;
err = partition_absolute(bd, part, type, offset, size);
if (err) {
return err;
}
err = bd->deinit();
if (err) {
return err;
}
return 0;
}
int MBRBlockDevice::partition(BlockDevice *bd, int part, uint8_t type,
bd_addr_t start, bd_addr_t stop)
{
int err = bd->init();
if (err) {
return err;
}
// Calculate dimensions
bd_size_t offset = ((int64_t)start < 0) ? -start : start;
bd_size_t size = ((int64_t)stop < 0) ? -stop : stop;
if (offset < 512) {
offset += std::max<uint32_t>(bd->get_erase_size(), 512);
}
size -= offset;
err = partition_absolute(bd, part, type, offset, size);
if (err) {
return err;
}
err = bd->deinit();
if (err) {
return err;
}
return 0;
}
MBRBlockDevice::MBRBlockDevice(BlockDevice *bd, int part)
: _bd(bd), _offset(0), _size(0), _type(0), _part(part), _init_ref_count(0), _is_initialized(false)
{
MBED_ASSERT(_part >= 1 && _part <= 4);
}
int MBRBlockDevice::init()
{
uint32_t buffer_size;
uint8_t *buffer = 0;
struct mbr_table *table;
bd_size_t sector;
int err;
uint32_t val = core_util_atomic_incr_u32(&_init_ref_count, 1);
if (val != 1) {
return BD_ERROR_OK;
}
err = _bd->init();
if (err) {
goto fail;
}
// Allocate smallest buffer necessary to write MBR
buffer_size = std::max<uint32_t>(_bd->get_read_size(), sizeof(struct mbr_table));
buffer = new uint8_t[buffer_size];
err = _bd->read(buffer, 512 - buffer_size, buffer_size);
if (err) {
goto fail;
}
// Check for valid table
table = reinterpret_cast<struct mbr_table *>(&buffer[buffer_size - sizeof(struct mbr_table)]);
if (table->signature[0] != 0x55 || table->signature[1] != 0xaa) {
err = BD_ERROR_INVALID_MBR;
goto fail;
}
// Check for valid partition status
// Same reason as in partition_absolute regarding Windows-formatted SD card
if (table->entries[_part - 1].status != 0x00 &&
table->entries[_part - 1].status != 0x80) {
err = BD_ERROR_INVALID_PARTITION;
goto fail;
}
// Check for valid entry
// 0x00 = no entry
// 0x05, 0x0f = extended partitions, currently not supported
if ((table->entries[_part - 1].type == 0x00 ||
table->entries[_part - 1].type == 0x05 ||
table->entries[_part - 1].type == 0x0f)) {
err = BD_ERROR_INVALID_PARTITION;
goto fail;
}
// Get partition attributes
sector = std::max<uint32_t>(_bd->get_erase_size(), 512);
_type = table->entries[_part - 1].type;
_offset = fromle32(table->entries[_part - 1].lba_offset) * sector;
_size = fromle32(table->entries[_part - 1].lba_size) * sector;
// Check that block addresses are valid
if (!_bd->is_valid_erase(_offset, _size)) {
err = BD_ERROR_INVALID_PARTITION;
goto fail;
}
_is_initialized = true;
delete[] buffer;
return BD_ERROR_OK;
fail:
delete[] buffer;
_is_initialized = false;
_init_ref_count = 0;
return err;
}
int MBRBlockDevice::deinit()
{
if (!_is_initialized) {
return BD_ERROR_OK;
}
uint32_t val = core_util_atomic_decr_u32(&_init_ref_count, 1);
if (val) {
return BD_ERROR_OK;
}
_is_initialized = false;
return _bd->deinit();
}
int MBRBlockDevice::sync()
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
return _bd->sync();
}
int MBRBlockDevice::read(void *b, bd_addr_t addr, bd_size_t size)
{
MBED_ASSERT(is_valid_read(addr, size));
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
return _bd->read(b, addr + _offset, size);
}
int MBRBlockDevice::program(const void *b, bd_addr_t addr, bd_size_t size)
{
MBED_ASSERT(is_valid_program(addr, size));
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
return _bd->program(b, addr + _offset, size);
}
int MBRBlockDevice::erase(bd_addr_t addr, bd_size_t size)
{
MBED_ASSERT(is_valid_erase(addr, size));
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
return _bd->erase(addr + _offset, size);
}
bd_size_t MBRBlockDevice::get_read_size() const
{
if (!_is_initialized) {
return 0;
}
return _bd->get_read_size();
}
bd_size_t MBRBlockDevice::get_program_size() const
{
if (!_is_initialized) {
return 0;
}
return _bd->get_program_size();
}
bd_size_t MBRBlockDevice::get_erase_size() const
{
if (!_is_initialized) {
return 0;
}
return _bd->get_erase_size();
}
bd_size_t MBRBlockDevice::get_erase_size(bd_addr_t addr) const
{
if (!_is_initialized) {
return 0;
}
return _bd->get_erase_size(_offset + addr);
}
int MBRBlockDevice::get_erase_value() const
{
if (!_is_initialized) {
return 0;
}
return _bd->get_erase_value();
}
bd_size_t MBRBlockDevice::size() const
{
return _size;
}
bd_size_t MBRBlockDevice::get_partition_start() const
{
return _offset;
}
bd_size_t MBRBlockDevice::get_partition_stop() const
{
return _offset + _size;
}
uint8_t MBRBlockDevice::get_partition_type() const
{
return _type;
}
int MBRBlockDevice::get_partition_number() const
{
return _part;
}
const char *MBRBlockDevice::get_type() const
{
if (_bd != NULL) {
return _bd->get_type();
}
return NULL;
}
} // namespace mbed