mbed-os/targets/TARGET_NUVOTON/TARGET_M451/device/StdDriver/m451_timer.c

293 lines
9.4 KiB
C

/**************************************************************************//**
* @file timer.c
* @version V3.00
* $Revision: 6 $
* $Date: 15/08/11 10:26a $
* @brief M451 series Timer driver source file
*
* @note
* Copyright (C) 2013~2015 Nuvoton Technology Corp. All rights reserved.
*****************************************************************************/
#include "M451Series.h"
/** @addtogroup Standard_Driver Standard Driver
@{
*/
/** @addtogroup TIMER_Driver TIMER Driver
@{
*/
/** @addtogroup TIMER_EXPORTED_FUNCTIONS TIMER Exported Functions
@{
*/
/**
* @brief Open Timer with Operate Mode and Frequency
*
* @param[in] timer The pointer of the specified Timer module. It could be TIMER0, TIMER1, TIMER2, TIMER3.
* @param[in] u32Mode Operation mode. Possible options are
* - \ref TIMER_ONESHOT_MODE
* - \ref TIMER_PERIODIC_MODE
* - \ref TIMER_TOGGLE_MODE
* - \ref TIMER_CONTINUOUS_MODE
* @param[in] u32Freq Target working frequency
*
* @return Real timer working frequency
*
* @details This API is used to configure timer to operate in specified mode and frequency.
* If timer cannot work in target frequency, a closest frequency will be chose and returned.
* @note After calling this API, Timer is \b NOT running yet. But could start timer running be calling
* \ref TIMER_Start macro or program registers directly.
*/
uint32_t TIMER_Open(TIMER_T *timer, uint32_t u32Mode, uint32_t u32Freq)
{
uint32_t u32Clk = TIMER_GetModuleClock(timer);
uint32_t u32Cmpr = 0, u32Prescale = 0;
// Fastest possible timer working freq is (u32Clk / 2). While cmpr = 2, pre-scale = 0.
if(u32Freq > (u32Clk / 2))
{
u32Cmpr = 2;
}
else
{
if(u32Clk > 64000000)
{
u32Prescale = 7; // real prescaler value is 8
u32Clk >>= 3;
}
else if(u32Clk > 32000000)
{
u32Prescale = 3; // real prescaler value is 4
u32Clk >>= 2;
}
else if(u32Clk > 16000000)
{
u32Prescale = 1; // real prescaler value is 2
u32Clk >>= 1;
}
u32Cmpr = u32Clk / u32Freq;
}
timer->CTL = u32Mode | u32Prescale;
timer->CMP = u32Cmpr;
return(u32Clk / (u32Cmpr * (u32Prescale + 1)));
}
/**
* @brief Stop Timer Counting
*
* @param[in] timer The pointer of the specified Timer module. It could be TIMER0, TIMER1, TIMER2, TIMER3.
*
* @return None
*
* @details This API stops timer counting and disable all timer interrupt function.
*/
void TIMER_Close(TIMER_T *timer)
{
timer->CTL = 0;
timer->EXTCTL = 0;
}
/**
* @brief Create a specify Delay Time
*
* @param[in] timer The pointer of the specified Timer module. It could be TIMER0, TIMER1, TIMER2, TIMER3.
* @param[in] u32Usec Delay period in micro seconds. Valid values are between 100~1000000 (100 micro second ~ 1 second).
*
* @return None
*
* @details This API is used to create a delay loop for u32usec micro seconds by using timer one-shot mode.
* @note This API overwrites the register setting of the timer used to count the delay time.
* @note This API use polling mode. So there is no need to enable interrupt for the timer module used to generate delay.
*/
void TIMER_Delay(TIMER_T *timer, uint32_t u32Usec)
{
uint32_t u32Clk = TIMER_GetModuleClock(timer);
uint32_t u32Prescale = 0, delay = (SystemCoreClock / u32Clk) + 1;
uint32_t u32Cmpr, u32NsecPerTick;
// Clear current timer configuration/
timer->CTL = 0;
timer->EXTCTL = 0;
if(u32Clk <= 1000000) // min delay is 1000 us if timer clock source is <= 1 MHz
{
if(u32Usec < 1000)
u32Usec = 1000;
if(u32Usec > 1000000)
u32Usec = 1000000;
}
else
{
if(u32Usec < 100)
u32Usec = 100;
if(u32Usec > 1000000)
u32Usec = 1000000;
}
if(u32Clk <= 1000000)
{
u32Prescale = 0;
u32NsecPerTick = 1000000000 / u32Clk;
u32Cmpr = (u32Usec * 1000) / u32NsecPerTick;
}
else
{
if(u32Clk > 64000000)
{
u32Prescale = 7; // real prescaler value is 8
u32Clk >>= 3;
}
else if(u32Clk > 32000000)
{
u32Prescale = 3; // real prescaler value is 4
u32Clk >>= 2;
}
else if(u32Clk > 16000000)
{
u32Prescale = 1; // real prescaler value is 2
u32Clk >>= 1;
}
if(u32Usec < 250)
{
u32Cmpr = (u32Usec * u32Clk) / 1000000;
}
else
{
u32NsecPerTick = 1000000000 / u32Clk;
u32Cmpr = (u32Usec * 1000) / u32NsecPerTick;
}
}
timer->CMP = u32Cmpr;
timer->CTL = TIMER_CTL_CNTEN_Msk | TIMER_ONESHOT_MODE | u32Prescale;
// When system clock is faster than timer clock, it is possible timer active bit cannot set in time while we check it.
// And the while loop below return immediately, so put a tiny delay here allowing timer start counting and raise active flag.
for(; delay > 0; delay--)
{
__NOP();
}
while(timer->CTL & TIMER_CTL_ACTSTS_Msk);
}
/**
* @brief Enable Timer Capture Function
*
* @param[in] timer The pointer of the specified Timer module. It could be TIMER0, TIMER1, TIMER2, TIMER3.
* @param[in] u32CapMode Timer capture mode. Could be
* - \ref TIMER_CAPTURE_FREE_COUNTING_MODE
* - \ref TIMER_CAPTURE_COUNTER_RESET_MODE
* @param[in] u32Edge Timer capture trigger edge. Possible values are
* - \ref TIMER_CAPTURE_FALLING_EDGE
* - \ref TIMER_CAPTURE_RISING_EDGE
* - \ref TIMER_CAPTURE_FALLING_AND_RISING_EDGE
*
* @return None
*
* @details This API is used to enable timer capture function with specify capture trigger edge \n
* to get current counter value or reset counter value to 0.
* @note Timer frequency should be configured separately by using \ref TIMER_Open API, or program registers directly.
*/
void TIMER_EnableCapture(TIMER_T *timer, uint32_t u32CapMode, uint32_t u32Edge)
{
timer->EXTCTL = (timer->EXTCTL & ~(TIMER_EXTCTL_CAPFUNCS_Msk | TIMER_EXTCTL_CAPEDGE_Msk)) |
u32CapMode | u32Edge | TIMER_EXTCTL_CAPEN_Msk;
}
/**
* @brief Disable Timer Capture Function
*
* @param[in] timer The pointer of the specified Timer module. It could be TIMER0, TIMER1, TIMER2, TIMER3.
*
* @return None
*
* @details This API is used to disable the timer capture function.
*/
void TIMER_DisableCapture(TIMER_T *timer)
{
timer->EXTCTL &= ~TIMER_EXTCTL_CAPEN_Msk;
}
/**
* @brief Enable Timer Counter Function
*
* @param[in] timer The pointer of the specified Timer module. It could be TIMER0, TIMER1, TIMER2, TIMER3.
* @param[in] u32Edge Detection edge of counter pin. Could be ether
* - \ref TIMER_COUNTER_FALLING_EDGE, or
* - \ref TIMER_COUNTER_RISING_EDGE
*
* @return None
*
* @details This function is used to enable the timer counter function with specify detection edge.
* @note Timer compare value should be configured separately by using \ref TIMER_SET_CMP_VALUE macro or program registers directly.
* @note While using event counter function, \ref TIMER_TOGGLE_MODE cannot set as timer operation mode.
*/
void TIMER_EnableEventCounter(TIMER_T *timer, uint32_t u32Edge)
{
timer->EXTCTL = (timer->EXTCTL & ~TIMER_EXTCTL_CNTPHASE_Msk) | u32Edge;
timer->CTL |= TIMER_CTL_EXTCNTEN_Msk;
}
/**
* @brief Disable Timer Counter Function
*
* @param[in] timer The pointer of the specified Timer module. It could be TIMER0, TIMER1, TIMER2, TIMER3.
*
* @return None
*
* @details This API is used to disable the timer event counter function.
*/
void TIMER_DisableEventCounter(TIMER_T *timer)
{
timer->CTL &= ~TIMER_CTL_EXTCNTEN_Msk;
}
/**
* @brief Get Timer Clock Frequency
*
* @param[in] timer The pointer of the specified Timer module. It could be TIMER0, TIMER1, TIMER2, TIMER3.
*
* @return Timer clock frequency
*
* @details This API is used to get the timer clock frequency.
* @note This API cannot return correct clock rate if timer source is from external clock input.
*/
uint32_t TIMER_GetModuleClock(TIMER_T *timer)
{
uint32_t u32Src;
const uint32_t au32Clk[] = {__HXT, __LXT, 0, 0, 0, __LIRC, 0, __HIRC};
if(timer == TIMER0)
u32Src = (CLK->CLKSEL1 & CLK_CLKSEL1_TMR0SEL_Msk) >> CLK_CLKSEL1_TMR0SEL_Pos;
else if(timer == TIMER1)
u32Src = (CLK->CLKSEL1 & CLK_CLKSEL1_TMR1SEL_Msk) >> CLK_CLKSEL1_TMR1SEL_Pos;
else if(timer == TIMER2)
u32Src = (CLK->CLKSEL1 & CLK_CLKSEL1_TMR2SEL_Msk) >> CLK_CLKSEL1_TMR2SEL_Pos;
else // Timer 3
u32Src = (CLK->CLKSEL1 & CLK_CLKSEL1_TMR3SEL_Msk) >> CLK_CLKSEL1_TMR3SEL_Pos;
if(u32Src == 2)
{
return (SystemCoreClock);
}
return (au32Clk[u32Src]);
}
/*@}*/ /* end of group TIMER_EXPORTED_FUNCTIONS */
/*@}*/ /* end of group TIMER_Driver */
/*@}*/ /* end of group Standard_Driver */
/*** (C) COPYRIGHT 2013~2015 Nuvoton Technology Corp. ***/