mbed-os/targets/TARGET_ARM_SSG/TARGET_CM3DS_MPS2/serial_api.c

394 lines
11 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// math.h required for floating point operations for baud rate calculation
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "serial_api.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "gpio_api.h"
#include "platform_devices.h"
/******************************************************************************
* INITIALIZATION
******************************************************************************/
#define STDIO_UART_NOT_INITED 0
#define STDIO_UART_INITED 1
#define UART_NUMBER 5
struct uart_irq_t {
uart_irq_handler handler;
uint32_t id;
};
static const PinMap PinMap_UART_TX[] = {
{MCC_TX, UART_0, 0},
{USBTX, UART_1, 0},
{SH0_TX, UART_2, ALTERNATE_FUNC},
{SH1_TX, UART_3, ALTERNATE_FUNC},
{XB_TX, UART_4, ALTERNATE_FUNC},
{NC, NC, 0}
};
static const PinMap PinMap_UART_RX[] = {
{MCC_RX, UART_0, 0},
{USBRX, UART_1, 0},
{SH0_RX, UART_2, ALTERNATE_FUNC},
{SH1_RX, UART_3, ALTERNATE_FUNC},
{XB_RX, UART_4, ALTERNATE_FUNC},
{NC, NC, 0}
};
/* Handlers registered */
static struct uart_irq_t uart_irq[UART_NUMBER];
/* Global variables needed for mbed */
int stdio_uart_inited = STDIO_UART_NOT_INITED;
serial_t stdio_uart;
/*
* Fill the serial_obj structure with good elements.
*/
static uint32_t fill_serial_object(struct serial_s *serial_obj, PinName tx,
PinName rx)
{
UARTName uart_peripheral;
if (serial_obj == NULL) {
error("serial_s structure is NULL");
return 1;
}
uart_peripheral = (UARTName)pinmap_merge(
pinmap_peripheral(tx, PinMap_UART_TX),
pinmap_peripheral(rx, PinMap_UART_RX));
switch (uart_peripheral) {
#ifdef ARM_UART0
case UART_0:
serial_obj->uart = &ARM_UART0_DEV;
serial_obj->index = UART_0;
serial_obj->irq_number = UART0_IRQn;
/* Fill stdio_uart global variable with these settings */
memcpy(&stdio_uart, serial_obj, sizeof(struct serial_s));
stdio_uart_inited = STDIO_UART_INITED;
return 0;
#endif /* ARM_UART0 */
#ifdef ARM_UART1
case UART_1:
serial_obj->uart = &ARM_UART1_DEV;
serial_obj->index = UART_1;
serial_obj->irq_number = UART1_IRQn;
return 0;
#endif /* ARM_UART1 */
#ifdef ARM_UART2
case UART_2:
serial_obj->uart = &ARM_UART2_DEV;
serial_obj->index = UART_2;
serial_obj->irq_number = UART2_IRQn;
return 0;
#endif /* ARM_UART2 */
#ifdef ARM_UART3
case UART_3:
serial_obj->uart = &ARM_UART3_DEV;
serial_obj->index = UART_3;
serial_obj->irq_number = UART3_IRQn;
return 0;
#endif /* ARM_UART3 */
#ifdef ARM_UART4
case UART_4:
serial_obj->uart = &ARM_UART4_DEV;
serial_obj->index = UART_4;
serial_obj->irq_number = UART4_IRQn;
return 0;
#endif /* ARM_UART4 */
default:
error("can not assign a valid UART peripheral to TX and RX pins given");
return 1;
}
}
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
if (fill_serial_object(obj, tx, rx) != 0) {
return;
}
(void)arm_uart_init(obj->uart, SystemCoreClock);
/*
* If tx and rx pins are not linked to a GPIO (like for UART0),
* pin_function will have no effect.
*/
pin_function(tx, pinmap_function(tx, PinMap_UART_TX));
pin_function(rx, pinmap_function(rx, PinMap_UART_RX));
}
void serial_free(serial_t *obj)
{
uart_irq[obj->index].id = 0;
uart_irq[obj->index].handler = 0;
}
void serial_baud(serial_t *obj, int baudrate)
{
if (arm_uart_set_baudrate(obj->uart, (uint32_t)baudrate) !=
ARM_UART_ERR_NONE) {
error("Invalid baudrate value or uart not initialized");
}
}
void serial_format(serial_t *obj, int data_bits,
SerialParity parity, int stop_bits)
{
/*
* The CMSDK APB UART is a simple design that supports 8-bit communication
* without parity, and is fixed at one stop bit per configuration.
* Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf
*/
error("serial format function not supported");
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
#ifdef ARM_UART0
void UART0_IRQHandler()
{
enum arm_uart_irq_t irq = arm_uart_get_interrupt_status(&ARM_UART0_DEV);
arm_uart_clear_interrupt(&ARM_UART0_DEV, irq);
if(uart_irq[UART_0].handler) {
switch(irq) {
case ARM_UART_IRQ_RX:
uart_irq[UART_0].handler(uart_irq[UART_0].id, RxIrq);
break;
case ARM_UART_IRQ_TX:
uart_irq[UART_0].handler(uart_irq[UART_0].id, TxIrq);
break;
case ARM_UART_IRQ_COMBINED:
uart_irq[UART_0].handler(uart_irq[UART_0].id, RxIrq);
uart_irq[UART_0].handler(uart_irq[UART_0].id, TxIrq);
break;
case ARM_UART_IRQ_NONE:
default:
break;
}
}
}
#endif /* ARM_UART0 */
#ifdef ARM_UART1
void UART1_IRQHandler()
{
enum arm_uart_irq_t irq = arm_uart_get_interrupt_status(&ARM_UART1_DEV);
arm_uart_clear_interrupt(&ARM_UART1_DEV, irq);
if(uart_irq[UART_1].handler) {
switch(irq) {
case ARM_UART_IRQ_RX:
uart_irq[UART_1].handler(uart_irq[UART_1].id, RxIrq);
break;
case ARM_UART_IRQ_TX:
uart_irq[UART_1].handler(uart_irq[UART_1].id, TxIrq);
break;
case ARM_UART_IRQ_COMBINED:
uart_irq[UART_1].handler(uart_irq[UART_1].id, RxIrq);
uart_irq[UART_1].handler(uart_irq[UART_1].id, TxIrq);
break;
case ARM_UART_IRQ_NONE:
default:
break;
}
}
}
#endif /* ARM_UART1 */
#ifdef ARM_UART2
void UART2_IRQHandler()
{
enum arm_uart_irq_t irq = arm_uart_get_interrupt_status(&ARM_UART2_DEV);
arm_uart_clear_interrupt(&ARM_UART2_DEV, irq);
if(uart_irq[UART_2].handler) {
switch(irq) {
case ARM_UART_IRQ_RX:
uart_irq[UART_2].handler(uart_irq[UART_2].id, RxIrq);
break;
case ARM_UART_IRQ_TX:
uart_irq[UART_2].handler(uart_irq[UART_2].id, TxIrq);
break;
case ARM_UART_IRQ_COMBINED:
uart_irq[UART_2].handler(uart_irq[UART_2].id, RxIrq);
uart_irq[UART_2].handler(uart_irq[UART_2].id, TxIrq);
break;
case ARM_UART_IRQ_NONE:
default:
break;
}
}
}
#endif /* ARM_UART2 */
#ifdef ARM_UART3
void UART3_IRQHandler()
{
enum arm_uart_irq_t irq = arm_uart_get_interrupt_status(&ARM_UART3_DEV);
arm_uart_clear_interrupt(&ARM_UART3_DEV, irq);
if(uart_irq[UART_3].handler) {
switch(irq) {
case ARM_UART_IRQ_RX:
uart_irq[UART_3].handler(uart_irq[UART_3].id, RxIrq);
break;
case ARM_UART_IRQ_TX:
uart_irq[UART_3].handler(uart_irq[UART_3].id, TxIrq);
break;
case ARM_UART_IRQ_COMBINED:
uart_irq[UART_3].handler(uart_irq[UART_3].id, RxIrq);
uart_irq[UART_3].handler(uart_irq[UART_3].id, TxIrq);
break;
case ARM_UART_IRQ_NONE:
default:
break;
}
}
}
#endif /* ARM_UART3 */
#ifdef ARM_UART4
void UART4_IRQHandler()
{
enum arm_uart_irq_t irq = arm_uart_get_interrupt_status(&ARM_UART4_DEV);
arm_uart_clear_interrupt(&ARM_UART4_DEV, irq);
if(uart_irq[UART_4].handler) {
switch(irq) {
case ARM_UART_IRQ_RX:
uart_irq[UART_4].handler(uart_irq[UART_4].id, RxIrq);
break;
case ARM_UART_IRQ_TX:
uart_irq[UART_4].handler(uart_irq[UART_4].id, TxIrq);
break;
case ARM_UART_IRQ_COMBINED:
uart_irq[UART_4].handler(uart_irq[UART_4].id, RxIrq);
uart_irq[UART_4].handler(uart_irq[UART_4].id, TxIrq);
break;
case ARM_UART_IRQ_NONE:
default:
break;
}
}
}
#endif /* ARM_UART4 */
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
uart_irq[obj->index].handler = handler;
uart_irq[obj->index].id = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
switch (irq) {
case RxIrq:
if (enable) {
NVIC_EnableIRQ(obj->irq_number);
(void)arm_uart_irq_rx_enable(obj->uart);
} else {
arm_uart_irq_rx_disable(obj->uart);
NVIC_DisableIRQ(obj->irq_number);
}
break;
case TxIrq:
if (enable) {
NVIC_EnableIRQ(obj->irq_number);
(void)arm_uart_irq_tx_enable(obj->uart);
} else {
arm_uart_irq_tx_disable(obj->uart);
NVIC_DisableIRQ(obj->irq_number);
}
break;
}
/* default: not added to force to cover all enumeration cases */
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj)
{
uint8_t byte = 0;
while (!serial_readable(obj)){};
(void)arm_uart_read(obj->uart, &byte);
return (int)byte;
}
void serial_putc(serial_t *obj, int c)
{
while (!serial_writable(obj)){};
(void)arm_uart_write(obj->uart, (int)c);
}
int serial_readable(serial_t *obj)
{
return arm_uart_rx_ready(obj->uart);
}
int serial_writable(serial_t *obj)
{
return arm_uart_tx_ready(obj->uart);
}
void serial_clear(serial_t *obj)
{
(void)arm_uart_write(obj->uart, 0x00);
}
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj)
{
/*
* The CMSDK APB UART doesn't support serial break.
* Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf
*/
error("serial_break_set function not supported");
}
void serial_break_clear(serial_t *obj)
{
/*
* The CMSDK APB UART doesn't support serial break.
* Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf
*/
error("serial_break_clear function not supported");
}
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow,
PinName txflow)
{
/*
* The CMSDK APB UART doesn't have support for flow control.
* Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf
*/
error("serial_set_flow_control function not supported");
}