mbed-os/targets/TARGET_RENESAS/TARGET_VK_RZ_A1H/spi_api.c

344 lines
8.7 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include <math.h>
#include "spi_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "RZ_A1_Init.h"
#ifdef MAX_PERI
static const PinMap PinMap_SPI_SCLK[] = {
{P2_12 , SPI_0, 2},
{P7_15 , SPI_0, 2},
{P4_4 , SPI_1, 2},
{P6_4 , SPI_1, 7},
{P8_3 , SPI_2, 3},
{P8_14 , SPI_2, 5},
{P3_0 , SPI_3, 8},
{P5_0 , SPI_3, 8},
{P2_8 , SPI_4, 8},
{P4_0 , SPI_4, 7},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{P2_13 , SPI_0, 2},
{P8_0 , SPI_0, 2},
{P4_5 , SPI_1, 2},
{P6_5 , SPI_1, 7},
{P8_4 , SPI_2, 3},
{P8_15 , SPI_2, 5},
{P3_1 , SPI_3, 8},
{P5_1 , SPI_3, 8},
{P2_9 , SPI_4, 8},
{P4_1 , SPI_4, 7},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MOSI[] = {
{P2_14 , SPI_0, 2},
{P8_1 , SPI_0, 2},
{P4_6 , SPI_1, 2},
{P6_6 , SPI_1, 7},
{P8_5 , SPI_2, 3},
{P9_0 , SPI_2, 5},
{P3_2 , SPI_3, 8},
{P5_2 , SPI_3, 8},
{P2_10 , SPI_4, 8},
{P4_2 , SPI_4, 7},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{P2_15 , SPI_0, 2},
{P8_2 , SPI_0, 2},
{P4_7 , SPI_1, 2},
{P6_7 , SPI_1, 7},
{P8_6 , SPI_2, 3},
{P9_1 , SPI_2, 5},
{P3_3 , SPI_3, 8},
{P5_3 , SPI_3, 8},
{P2_11 , SPI_4, 8},
{P4_3 , SPI_4, 7},
{NC , NC , 0}
};
#else
static const PinMap PinMap_SPI_SCLK[] = {
{P4_4 , SPI_1, 2},
{P8_14 , SPI_2, 5},
{P5_0 , SPI_3, 8},
{P4_0 , SPI_4, 7},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{P4_5 , SPI_1, 2},
{P8_15 , SPI_2, 5},
{P5_1 , SPI_3, 8},
{P4_1 , SPI_4, 7},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MOSI[] = {
{P4_6 , SPI_1, 2},
{P9_0 , SPI_2, 5},
{P5_2 , SPI_3, 8},
{P4_2 , SPI_4, 7},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{P4_7 , SPI_1, 2},
{P9_1 , SPI_2, 5},
{P5_3 , SPI_3, 8},
{P4_3 , SPI_4, 7},
{NC , NC , 0}
};
#endif
static const struct st_rspi *RSPI[] = RSPI_ADDRESS_LIST;
static inline void spi_disable(spi_t *obj);
static inline void spi_enable(spi_t *obj);
static inline int spi_readable(spi_t *obj);
static inline void spi_write(spi_t *obj, int value);
static inline int spi_read(spi_t *obj);
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
// determine the SPI to use
volatile uint8_t dummy;
uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
uint32_t spi = pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)spi != NC);
obj->spi = (struct st_rspi *)RSPI[spi];
// enable power and clocking
switch (spi) {
case SPI_1: CPGSTBCR10 &= ~(0x40); break;
case SPI_2: CPGSTBCR10 &= ~(0x20); break;
case SPI_3: CPGSTBCR10 &= ~(0x10); break;
case SPI_4: CPGSTBCR10 &= ~(0x08); break;
}
dummy = CPGSTBCR10;
obj->spi->SPCR = 0x00; // CTRL to 0
obj->spi->SPSCR = 0x00; // no sequential operation
obj->spi->SSLP = 0x00; // SSL 'L' active
obj->spi->SPDCR = 0x20; // byte access
obj->spi->SPCKD = 0x00; // SSL -> enable CLK delay : 1RSPCK
obj->spi->SSLND = 0x00; // CLK end -> SSL neg delay : 1RSPCK
obj->spi->SPND = 0x00; // delay between CMD : 1RSPCK + 2P1CLK
obj->spi->SPPCR = 0x20; // MOSI Idle fixed value equals 0
obj->spi->SPBFCR = 0xf0; // and set trigger count: read 1, write 1
obj->spi->SPBFCR = 0x30; // and reset buffer
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if ((int)ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
}
void spi_free(spi_t *obj) {}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
int DSS; // DSS (data select size)
int polarity = (mode & 0x2) ? 1 : 0;
int phase = (mode & 0x1) ? 1 : 0;
uint16_t tmp = 0;
uint16_t mask = 0xf03;
uint16_t wk_spcmd0;
uint8_t splw;
switch (mode) {
case 0:
case 1:
case 2:
case 3:
// Do Nothing
break;
default:
error("SPI format error");
return;
}
switch (bits) {
case 8:
DSS = 0x7;
splw = 0x20;
break;
case 16:
DSS = 0xf;
splw = 0x40;
break;
case 32:
DSS = 0x2;
splw = 0x60;
break;
default:
error("SPI module don't support other than 8/16/32bits");
return;
}
tmp |= phase;
tmp |= (polarity << 1);
tmp |= (DSS << 8);
obj->bits = bits;
spi_disable(obj);
wk_spcmd0 = obj->spi->SPCMD0;
wk_spcmd0 &= ~mask;
wk_spcmd0 |= (mask & tmp);
obj->spi->SPCMD0 = wk_spcmd0;
obj->spi->SPDCR = splw;
if (slave) {
obj->spi->SPCR &=~(1 << 3); // MSTR to 0
} else {
obj->spi->SPCR |= (1 << 3); // MSTR to 1
}
spi_enable(obj);
}
void spi_frequency(spi_t *obj, int hz) {
uint32_t pclk_base;
uint32_t div;
uint32_t brdv = 0;
uint32_t hz_max;
uint32_t hz_min;
uint16_t mask = 0x000c;
uint16_t wk_spcmd0;
/* set PCLK */
if (RZ_A1_IsClockMode0() == false) {
pclk_base = CM1_RENESAS_RZ_A1_P1_CLK;
} else {
pclk_base = CM0_RENESAS_RZ_A1_P1_CLK;
}
hz_min = pclk_base / 2 / 256 / 8;
hz_max = pclk_base / 2;
if ((hz < hz_min) || (hz > hz_max)) {
error("Couldn't setup requested SPI frequency");
return;
}
div = (pclk_base / hz / 2);
while (div > 256) {
div >>= 1;
brdv++;
}
div -= 1;
brdv = (brdv << 2);
spi_disable(obj);
obj->spi->SPBR = div;
wk_spcmd0 = obj->spi->SPCMD0;
wk_spcmd0 &= ~mask;
wk_spcmd0 |= (mask & brdv);
obj->spi->SPCMD0 = wk_spcmd0;
spi_enable(obj);
}
static inline void spi_disable(spi_t *obj) {
obj->spi->SPCR &= ~(1 << 6); // SPE to 0
}
static inline void spi_enable(spi_t *obj) {
obj->spi->SPCR |= (1 << 6); // SPE to 1
}
static inline int spi_readable(spi_t *obj) {
return obj->spi->SPSR & (1 << 7); // SPRF
}
static inline int spi_tend(spi_t *obj) {
return obj->spi->SPSR & (1 << 6); // TEND
}
static inline void spi_write(spi_t *obj, int value) {
if (obj->bits == 8) {
obj->spi->SPDR.UINT8[0] = (uint8_t)value;
} else if (obj->bits == 16) {
obj->spi->SPDR.UINT16[0] = (uint16_t)value;
} else {
obj->spi->SPDR.UINT32 = (uint32_t)value;
}
}
static inline int spi_read(spi_t *obj) {
int read_data;
if (obj->bits == 8) {
read_data = obj->spi->SPDR.UINT8[0];
} else if (obj->bits == 16) {
read_data = obj->spi->SPDR.UINT16[0];
} else {
read_data = obj->spi->SPDR.UINT32;
}
return read_data;
}
int spi_master_write(spi_t *obj, int value) {
spi_write(obj, value);
while(!spi_tend(obj));
return spi_read(obj);
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill) {
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
int spi_slave_receive(spi_t *obj) {
return (spi_readable(obj) && !spi_busy(obj)) ? (1) : (0);
}
int spi_slave_read(spi_t *obj) {
return spi_read(obj);
}
void spi_slave_write(spi_t *obj, int value) {
spi_write(obj, value);
}
int spi_busy(spi_t *obj) {
return 0;
}