mirror of https://github.com/ARMmbed/mbed-os.git
166 lines
5.5 KiB
C
166 lines
5.5 KiB
C
/* mbed Microcontroller Library
|
|
* Copyright (c) 2017-2017 ARM Limited
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "mbed_mktime.h"
|
|
|
|
/*
|
|
* time constants
|
|
*/
|
|
#define SECONDS_BY_MINUTES 60
|
|
#define MINUTES_BY_HOUR 60
|
|
#define SECONDS_BY_HOUR (SECONDS_BY_MINUTES * MINUTES_BY_HOUR)
|
|
#define HOURS_BY_DAY 24
|
|
#define SECONDS_BY_DAY (SECONDS_BY_HOUR * HOURS_BY_DAY)
|
|
|
|
/*
|
|
* 2 dimensional array containing the number of seconds elapsed before a given
|
|
* month.
|
|
* The second index map to the month while the first map to the type of year:
|
|
* - 0: non leap year
|
|
* - 1: leap year
|
|
*/
|
|
static const uint32_t seconds_before_month[2][12] = {
|
|
{
|
|
0,
|
|
31 * SECONDS_BY_DAY,
|
|
(31 + 28) * SECONDS_BY_DAY,
|
|
(31 + 28 + 31) * SECONDS_BY_DAY,
|
|
(31 + 28 + 31 + 30) * SECONDS_BY_DAY,
|
|
(31 + 28 + 31 + 30 + 31) * SECONDS_BY_DAY,
|
|
(31 + 28 + 31 + 30 + 31 + 30) * SECONDS_BY_DAY,
|
|
(31 + 28 + 31 + 30 + 31 + 30 + 31) * SECONDS_BY_DAY,
|
|
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31) * SECONDS_BY_DAY,
|
|
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30) * SECONDS_BY_DAY,
|
|
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31) * SECONDS_BY_DAY,
|
|
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30) * SECONDS_BY_DAY,
|
|
},
|
|
{
|
|
0,
|
|
31 * SECONDS_BY_DAY,
|
|
(31 + 29) * SECONDS_BY_DAY,
|
|
(31 + 29 + 31) * SECONDS_BY_DAY,
|
|
(31 + 29 + 31 + 30) * SECONDS_BY_DAY,
|
|
(31 + 29 + 31 + 30 + 31) * SECONDS_BY_DAY,
|
|
(31 + 29 + 31 + 30 + 31 + 30) * SECONDS_BY_DAY,
|
|
(31 + 29 + 31 + 30 + 31 + 30 + 31) * SECONDS_BY_DAY,
|
|
(31 + 29 + 31 + 30 + 31 + 30 + 31 + 31) * SECONDS_BY_DAY,
|
|
(31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30) * SECONDS_BY_DAY,
|
|
(31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31) * SECONDS_BY_DAY,
|
|
(31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30) * SECONDS_BY_DAY,
|
|
}
|
|
};
|
|
|
|
bool _rtc_is_leap_year(int year) {
|
|
/*
|
|
* since in practice, the value manipulated by this algorithm lie in the
|
|
* range [70 : 138], the algorith can be reduced to: year % 4.
|
|
* The algorithm valid over the full range of value is:
|
|
|
|
year = 1900 + year;
|
|
if (year % 4) {
|
|
return false;
|
|
} else if (year % 100) {
|
|
return true;
|
|
} else if (year % 400) {
|
|
return false;
|
|
}
|
|
return true;
|
|
|
|
*/
|
|
return (year) % 4 ? false : true;
|
|
}
|
|
|
|
time_t _rtc_mktime(const struct tm* time) {
|
|
// partial check for the upper bound of the range
|
|
// normalization might happen at the end of the function
|
|
// this solution is faster than checking if the input is after the 19th of
|
|
// january 2038 at 03:14:07.
|
|
if ((time->tm_year < 70) || (time->tm_year > 138)) {
|
|
return ((time_t) -1);
|
|
}
|
|
|
|
uint32_t result = time->tm_sec;
|
|
result += time->tm_min * SECONDS_BY_MINUTES;
|
|
result += time->tm_hour * SECONDS_BY_HOUR;
|
|
result += (time->tm_mday - 1) * SECONDS_BY_DAY;
|
|
result += seconds_before_month[_rtc_is_leap_year(time->tm_year)][time->tm_mon];
|
|
|
|
if (time->tm_year > 70) {
|
|
// valid in the range [70:138]
|
|
uint32_t count_of_leap_days = ((time->tm_year - 1) / 4) - (70 / 4);
|
|
result += (((time->tm_year - 70) * 365) + count_of_leap_days) * SECONDS_BY_DAY;
|
|
}
|
|
|
|
if (result > INT32_MAX) {
|
|
return (time_t) -1;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool _rtc_localtime(time_t timestamp, struct tm* time_info) {
|
|
if (((int32_t) timestamp) < 0) {
|
|
return false;
|
|
}
|
|
|
|
time_info->tm_sec = timestamp % 60;
|
|
timestamp = timestamp / 60; // timestamp in minutes
|
|
time_info->tm_min = timestamp % 60;
|
|
timestamp = timestamp / 60; // timestamp in hours
|
|
time_info->tm_hour = timestamp % 24;
|
|
timestamp = timestamp / 24; // timestamp in days;
|
|
|
|
// compute the weekday
|
|
// The 1st of January 1970 was a Thursday which is equal to 4 in the weekday
|
|
// representation ranging from [0:6]
|
|
time_info->tm_wday = (timestamp + 4) % 7;
|
|
|
|
// years start at 70
|
|
time_info->tm_year = 70;
|
|
while (true) {
|
|
if (_rtc_is_leap_year(time_info->tm_year) && timestamp >= 366) {
|
|
++time_info->tm_year;
|
|
timestamp -= 366;
|
|
} else if (!_rtc_is_leap_year(time_info->tm_year) && timestamp >= 365) {
|
|
++time_info->tm_year;
|
|
timestamp -= 365;
|
|
} else {
|
|
// the remaining days are less than a years
|
|
break;
|
|
}
|
|
}
|
|
|
|
time_info->tm_yday = timestamp;
|
|
|
|
// convert days into seconds and find the current month
|
|
timestamp *= SECONDS_BY_DAY;
|
|
time_info->tm_mon = 11;
|
|
bool leap = _rtc_is_leap_year(time_info->tm_year);
|
|
for (uint32_t i = 0; i < 12; ++i) {
|
|
if ((uint32_t) timestamp < seconds_before_month[leap][i]) {
|
|
time_info->tm_mon = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// remove month from timestamp and compute the number of days.
|
|
// note: unlike other fields, days are not 0 indexed.
|
|
timestamp -= seconds_before_month[leap][time_info->tm_mon];
|
|
time_info->tm_mday = (timestamp / SECONDS_BY_DAY) + 1;
|
|
|
|
return true;
|
|
}
|