mbed-os/targets/TARGET_TOSHIBA/TARGET_TMPM4G9/serial_api.c

710 lines
21 KiB
C

/* mbed Microcontroller Library
* (C)Copyright TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION 2018 All rights reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include "mbed_error.h"
#include "serial_api.h"
#include "pinmap.h"
#define UART_NUM 8
#define UART_ENABLE_RX ((uint32_t)0x00000001)
#define UART_ENABLE_TX ((uint32_t)0x00000002)
#define UARTxFIFOCLR_TFCLR_CLEAR ((uint32_t)0x00000002)
#define UARTxFIFOCLR_RFCLR_CLEAR ((uint32_t)0x00000001)
#define UARTxSWRST_SWRSTF_MASK ((uint32_t)0x00000080)
#define UARTxSWRST_SWRSTF_RUN ((uint32_t)0x00000080)
#define UARTxSWRST_SWRST_10 ((uint32_t)0x00000002)
#define UARTxSWRST_SWRST_01 ((uint32_t)0x00000001)
#define UART_RX_FIFO_FILL_LEVEL ((uint32_t)0x00000100)
#define LCR_H_WLEN_MASK ((uint32_t)0xFFFFFF9F)
#define LCR_H_STP2_MASK ((uint32_t)0xFFFFFFF7)
#define LCR_H_PARITY_MASK ((uint32_t)0xFFFFFF79)
#define CR_FLOW_CTRL_MASK ((uint32_t)0x00000F07)
#define CR_MODE_MASK ((uint32_t)0x0000CC07)
#define FUARTxCR_UARTEN_ENABLE_CLEAR ((uint32_t)0xFFFFFF7E)
#define FUART_CTS_RTS_DISABLE_MASK ((uint32_t)0XFFFF3FFF)
#define BAUDRATE_DEFAULT (9600)
#define CLR_REGISTER (0x00)
static const PinMap PinMap_UART_TX[] = {
{PE3, SERIAL_0, PIN_DATA(7, 1)},
{PH1, SERIAL_1, PIN_DATA(3, 1)},
{PG1, SERIAL_2, PIN_DATA(3, 1)},
{PU7, SERIAL_3, PIN_DATA(7, 1)},
{PU0, SERIAL_4, PIN_DATA(7, 1)},
{PJ1, SERIAL_5, PIN_DATA(3, 1)},
{PG4, SERIAL_6, PIN_DATA(5, 1)},
{PM7, SERIAL_7, PIN_DATA(7, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_UART_RX[] = {
{PE2, SERIAL_0, PIN_DATA(7, 0)},
{PH0, SERIAL_1, PIN_DATA(3, 0)},
{PG0, SERIAL_2, PIN_DATA(3, 0)},
{PU6, SERIAL_3, PIN_DATA(7, 0)},
{PU1, SERIAL_4, PIN_DATA(7, 0)},
{PJ0, SERIAL_5, PIN_DATA(3, 0)},
{PG5, SERIAL_6, PIN_DATA(5, 0)},
{PM6, SERIAL_7, PIN_DATA(7, 0)},
{NC, NC, 0}
};
static const PinMap PinMap_UART_RTS[] = {
{PE0, SERIAL_0, PIN_DATA(7, 1)},
{PH2, SERIAL_1, PIN_DATA(3, 1)},
{PG2, SERIAL_2, PIN_DATA(3, 1)},
{PU4, SERIAL_3, PIN_DATA(7, 1)},
{PU3, SERIAL_4, PIN_DATA(5, 1)},
{PJ2, SERIAL_5, PIN_DATA(3, 1)},
{PG6, SERIAL_6, PIN_DATA(5, 1)},
{PM5, SERIAL_7, PIN_DATA(7, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_UART_CTS[] = {
{PE1, SERIAL_0, PIN_DATA(7, 0)},
{PH3, SERIAL_1, PIN_DATA(3, 0)},
{PG3, SERIAL_2, PIN_DATA(3, 0)},
{PU5, SERIAL_3, PIN_DATA(7, 0)},
{PU2, SERIAL_4, PIN_DATA(5, 0)},
{PJ3, SERIAL_5, PIN_DATA(3, 0)},
{PG7, SERIAL_6, PIN_DATA(5, 0)},
{PM4, SERIAL_7, PIN_DATA(7, 0)},
{NC, NC, 0}
};
static int serial_irq_ids[UART_NUM] = {0};
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
static void uart_swreset(TSB_UART_TypeDef *UARTx);
static void fuart_init_config(TSB_FURT_TypeDef * FUARTx, FUART_InitTypeDef * InitStruct);
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
int is_stdio_uart = 0;
obj->mode = 0;
cg_t paramCG;
paramCG.p_instance = TSB_CG;
uart_clock_t prescal = {0};
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
UARTName uart_name = (UARTName)pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT((int)uart_name != NC);
obj->is_using_fuart = 0;
obj->index = uart_name;
// Initialize UART instance
switch (uart_name) {
case SERIAL_0:
obj->UARTx = TSB_UART0;
// Enable clock for UART0 and Port E
TSB_CG_FSYSMENA_IPMENA23 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB06 = TXZ_ENABLE;
break;
case SERIAL_1:
obj->UARTx = TSB_UART1;
// Enable clock for UART1 and Port H
TSB_CG_FSYSMENA_IPMENA24 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB09 = TXZ_ENABLE;
break;
case SERIAL_2:
obj->UARTx = TSB_UART2;
// Enable clock for UART2 and Port G
TSB_CG_FSYSMENA_IPMENA25 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB08 = TXZ_ENABLE;
break;
case SERIAL_3:
obj->UARTx = TSB_UART3;
// Enable clock for UART3 and Port U
TSB_CG_FSYSMENA_IPMENA26 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB18 = TXZ_ENABLE;
break;
case SERIAL_4:
obj->UARTx = TSB_UART4;
// Enable clock for UART4 and Port U
TSB_CG_FSYSMENA_IPMENA27 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB18 = TXZ_ENABLE;
break;
case SERIAL_5:
obj->UARTx = TSB_UART5;
// Enable clock for UART5 and Port J
TSB_CG_FSYSMENA_IPMENA28 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB10 = TXZ_ENABLE;
break;
case SERIAL_6:
obj->FUARTx = TSB_FURT0;
//Enable clock for UART6 and Port G
TSB_CG_FSYSMENA_IPMENA01 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB08 = TXZ_ENABLE;
obj->is_using_fuart = 1;
break;
case SERIAL_7:
obj->FUARTx = TSB_FURT1;
//Enable clock for UART7 and Port M
TSB_CG_FSYSMENA_IPMENA02 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB13 = TXZ_ENABLE;
obj->is_using_fuart = 1;
break;
default:
break;
}
// Set alternate function
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
if(!(obj->is_using_fuart)) {
if (tx != NC && rx != NC) {
obj->mode = UART_ENABLE_RX | UART_ENABLE_TX;
} else {
if (tx != NC) {
obj->mode = UART_ENABLE_TX;
} else {
if (rx != NC) {
obj->mode = UART_ENABLE_RX;
}
}
}
//software reset
uart_swreset(obj->UARTx);
//mbed default configurations
obj->UARTx->CR0 |= (1U); // data lengh 8 bit No parity one stop bit
prescal.prsel = UART_PLESCALER_1;
uart_get_boudrate_setting(cg_get_mphyt0(&paramCG), &prescal, BAUDRATE_DEFAULT, &obj->boud_obj);
obj->UARTx->BRD |=((obj->boud_obj.ken) | (obj->boud_obj.brk << 16) | (obj->boud_obj.brn));
obj->UARTx->FIFOCLR = (UARTxFIFOCLR_TFCLR_CLEAR | UARTxFIFOCLR_RFCLR_CLEAR); // Clear FIFO
obj->UARTx->TRANS |= obj->mode; // Enable TX RX block.
obj->UARTx->CR1 = (UART_RX_FIFO_FILL_LEVEL | UART_TX_INT_ENABLE | UART_RX_INT_ENABLE);
} else {
if (tx != NC && rx != NC) {
obj->fuart_config.Mode = FUARTxCR_TXE_ENABLE | FUARTxCR_RXE_ENABLE;
} else if (tx != NC) {
obj->fuart_config.Mode = FUARTxCR_TXE_ENABLE;
} else if (rx != NC) {
obj->fuart_config.Mode = FUARTxCR_RXE_ENABLE;
}
obj->fuart_config.BaudRate = BAUDRATE_DEFAULT;
obj->fuart_config.DataBits = FUART_DATA_LENGTH_8;
obj->fuart_config.StopBits = FUART_STOP_BIT_1;
obj->fuart_config.Parity = FUART_PARITY_DISABLE;
obj->fuart_config.FlowCtrl = FUART_CTS_DISABLE | FUART_RTS_DISABLE;
fuart_init_config(obj->FUARTx, &obj->fuart_config);
//Enable FUART
obj->FUARTx->CR |= FUARTxCR_UARTEN_ENABLE;
}
is_stdio_uart = (uart_name == STDIO_UART) ? (1) : (0);
if (is_stdio_uart) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj)
{
if(!(obj->is_using_fuart)) {
obj->UARTx->TRANS = CLR_REGISTER;
obj->UARTx->CR0 = CLR_REGISTER;
obj->UARTx->CR1 = CLR_REGISTER;
obj->UARTx = CLR_REGISTER;
uart_swreset(obj->UARTx);
} else {
obj->FUARTx->CR = CLR_REGISTER;
obj->FUARTx->IMSC = CLR_REGISTER;
obj->FUARTx->ICR = CLR_REGISTER;
obj->FUARTx->LCR_H = CLR_REGISTER;
obj->FUARTx = CLR_REGISTER;
}
obj->index = (uint32_t)NC;
}
void serial_baud(serial_t *obj, int baudrate)
{
cg_t paramCG;
paramCG.p_instance = TSB_CG;
uart_clock_t prescal;
if(!(obj->is_using_fuart)) {
prescal.prsel = UART_PLESCALER_1;
uart_get_boudrate_setting(cg_get_mphyt0(&paramCG), &prescal, baudrate, &obj->boud_obj);
obj->UARTx->BRD = CLR_REGISTER; //clear BRD register
obj->UARTx->BRD |=((obj->boud_obj.ken) | (obj->boud_obj.brk << 16) | (obj->boud_obj.brn));
} else {
obj->FUARTx->CR &= FUARTxCR_UARTEN_ENABLE_CLEAR;
obj->fuart_config.BaudRate = baudrate * 2;
fuart_init_config(obj->FUARTx, &obj->fuart_config);
obj->FUARTx->CR |= FUARTxCR_UARTEN_ENABLE;
}
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
uint32_t parity_check = 0;
uint32_t data_length = 0;
uint32_t tmp = 0;
uint32_t sblen = 0;
MBED_ASSERT((stop_bits == 1) || (stop_bits == 2));
MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven));
if(!(obj->is_using_fuart)) {
MBED_ASSERT((data_bits > 6) && (data_bits < 10)); // 0: 7 data bits ... 2: 9 data bits
parity_check = ((parity == ParityOdd) ? 1 :((parity == ParityEven) ? 3 : 0));
data_length = (data_bits == 8 ? 1 :((data_bits == 7) ? 0 : 2));
sblen = (stop_bits == 1) ? 0 : 1; // 0: 1 stop bits, 1: 2 stop bits
tmp = ((sblen << 4) |(parity_check << 2) | data_length);
obj->UARTx->CR0 = tmp;
} else {
MBED_ASSERT((data_bits > 6) && (data_bits < 9)); // 0: 5 data bits ... 2: 8 data bits
obj->FUARTx->CR &= FUARTxCR_UARTEN_ENABLE_CLEAR;
// Parity bit update
if(parity == ParityOdd) {
obj->fuart_config.Parity = FUART_PARITY_BIT_ODD | FUART_PARITY_ENABLE;
} else if(parity == ParityEven) {
obj->fuart_config.Parity = FUART_PARITY_BIT_EVEN | FUART_PARITY_ENABLE;
} else {
obj->fuart_config.Parity = FUART_PARITY_DISABLE;
}
// Stop bit update
obj->fuart_config.StopBits = (stop_bits == 1) ? FUART_STOP_BIT_1 : FUART_STOP_BIT_2;
// Data length update
obj->fuart_config.DataBits = (data_bits == 7) ? FUART_DATA_LENGTH_7 : FUART_DATA_LENGTH_8;
fuart_init_config(obj->FUARTx, &obj->fuart_config);
obj->FUARTx->CR |= FUARTxCR_UARTEN_ENABLE;
}
}
// INTERRUPT HANDLING
void INTUART0RX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_0], RxIrq);
}
void INTUART0TX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_0], TxIrq);
}
void INTUART1RX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_1], RxIrq);
}
void INTUART1TX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_1], TxIrq);
}
void INTUART2RX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_2], RxIrq);
}
void INTUART2TX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_2], TxIrq);
}
void INTUART3RX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_3], RxIrq);
}
void INTUART3TX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_3], TxIrq);
}
void INTUART4RX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_4], RxIrq);
}
void INTUART4TX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_4], TxIrq);
}
void INTUART5RX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_5], RxIrq);
}
void INTUART5TX_IRQHandler(void)
{
irq_handler(serial_irq_ids[SERIAL_5], TxIrq);
}
void INTFUART0_IRQHandler(void)
{
uint32_t int_status;
int_status = TSB_FURT0->MIS;
if (int_status & (1 << 4U)) {
irq_handler(serial_irq_ids[SERIAL_6], RxIrq);
} else if (int_status & (1 << 5U)) {
irq_handler(serial_irq_ids[SERIAL_6], TxIrq);
} else {
return;
}
}
void INTFUART1_IRQHandler(void)
{
uint32_t int_status;
int_status = TSB_FURT1->MIS;
if (int_status & (1 << 4U)) {
irq_handler(serial_irq_ids[SERIAL_7], RxIrq);
} else if (int_status & (1 << 5U)) {
irq_handler(serial_irq_ids[SERIAL_7], TxIrq);
} else {
return;
}
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
IRQn_Type irq_n = (IRQn_Type)0;
switch (obj->index) {
case SERIAL_0:
if (irq == RxIrq) {
irq_n = INTUART0RX_IRQn;
} else {
irq_n = INTUART0TX_IRQn;
}
break;
case SERIAL_1:
if (irq == RxIrq) {
irq_n = INTUART1RX_IRQn;
} else {
irq_n = INTUART1TX_IRQn;
}
break;
case SERIAL_2:
if (irq == RxIrq) {
irq_n = INTUART2RX_IRQn;
} else {
irq_n = INTUART2TX_IRQn;
}
break;
case SERIAL_3:
if (irq == RxIrq) {
irq_n = INTUART3RX_IRQn;
} else {
irq_n = INTUART3TX_IRQn;
}
break;
case SERIAL_4:
if (irq == RxIrq) {
irq_n = INTUART4RX_IRQn;
} else {
irq_n = INTUART4TX_IRQn;
}
break;
case SERIAL_5:
if (irq == RxIrq) {
irq_n = INTUART5RX_IRQn;
} else {
irq_n = INTUART5TX_IRQn;
}
break;
case SERIAL_6:
irq_n = INTFUART0_IRQn;
break;
case SERIAL_7:
irq_n = INTFUART1_IRQn;
break;
default:
break;
}
if(obj->is_using_fuart) {
// Set interrupt mask
if (irq == RxIrq) {
obj->FUARTx->IMSC = (1 << 4U);
} else {
obj->FUARTx->IMSC = (1 << 5U);
}
}
NVIC_ClearPendingIRQ(irq_n);
if (enable) {
NVIC_EnableIRQ(irq_n);
} else {
NVIC_DisableIRQ(irq_n);
}
}
int serial_getc(serial_t *obj)
{
int data = 0;
while (!serial_readable(obj)) { // Wait until Rx buffer is full
// Do nothing
}
if(!(obj->is_using_fuart)) {
//Read Data Register
data = (obj->UARTx->DR & 0xFFU);
obj->UARTx->SR |= (1U << 6); // clear RXEND flag
} else {
data = (obj->FUARTx->DR & 0xFFU);
}
return data;
}
void serial_putc(serial_t *obj, int c)
{
while (!serial_writable(obj)) {
// Do nothing
}
// Write Data Register
if(!(obj->is_using_fuart)) {
obj->UARTx->DR = (c & 0xFF);
while((obj->UARTx->SR & (1U << 14)) == 0) {
}
obj->UARTx->SR |= (1U << 14); // clear TXEND flag
} else {
obj->FUARTx->DR = (c & 0xFF);
}
}
int serial_readable(serial_t *obj)
{
int ret = 0;
if(!(obj->is_using_fuart)) {
if ((obj->UARTx->SR & 0x000F) != 0) {
ret = 1;
}
} else {
if(obj->FUARTx->FR & (1 << 6U)) {
ret = 1;
}
}
return ret;
}
int serial_writable(serial_t *obj)
{
int ret = 0;
if(!(obj->is_using_fuart)) {
if ((obj->UARTx->SR & 0x8000) == 0) {
ret = 1;
}
} else {
if(obj->FUARTx->FR & (1 << 7U)) {
ret = 1;
}
}
return ret;
}
void serial_clear(serial_t *obj)
{
uint32_t dummy;
if(!(obj->is_using_fuart)) {
obj->UARTx->FIFOCLR = 0x03;
} else {
{
dummy = obj->FUARTx->DR; //dummy read
}
}
}
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
// Set flow control
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
UARTName uart_name = (UARTName)pinmap_merge(uart_cts, uart_rts);
if (!(obj->is_using_fuart)) {
if (type == FlowControlCTS) {
MBED_ASSERT(uart_cts != (UARTName) NC);
pinmap_pinout(txflow, PinMap_UART_CTS); // Enable the pin for CTS function
pin_mode(txflow, PullUp); // initial state of CTS preferably high
obj->UARTx->CR0 |= (1 << 10); // Enable CTS hardware control
} else if (type == FlowControlRTS) {
MBED_ASSERT(uart_rts != (UARTName) NC);
pinmap_pinout(rxflow, PinMap_UART_RTS); // Enable the pin for RTS function
obj->UARTx->CR0 |= (1 << 9); // Enable RTS hardware control
} else if (type == FlowControlRTSCTS) {
MBED_ASSERT(uart_name != (UARTName) NC);
obj->UARTx->CR0 |= (3 << 9); // Enable CTS and RTS hardware flow control
pinmap_pinout(txflow, PinMap_UART_CTS); // Enable the pin for CTS function
pinmap_pinout(rxflow, PinMap_UART_RTS); // Enable the pin for RTS function
pin_mode(txflow, PullUp);
} else {
obj->UARTx->CR0 &= (~(3 << 9)); // Disable CTS and RTS hardware flow control
}
} else {
obj->FUARTx->CR &= FUARTxCR_UARTEN_ENABLE_CLEAR; // Disable FUART
if (type == FlowControlCTS) {
MBED_ASSERT(uart_cts != (UARTName) NC);
obj->FUARTx->CR |= FUART_CTS_ENABLE; // Enable CTS hardware flow control
pinmap_pinout(txflow, PinMap_UART_CTS); // Enable the pin for CTS and RTS function
pin_mode(txflow, PullUp);
} else if (type == FlowControlRTS) {
MBED_ASSERT(uart_rts != (UARTName) NC);
obj->FUARTx->CR |= FUART_RTS_ENABLE; // Enable RTS hardware flow control
pinmap_pinout(rxflow, PinMap_UART_RTS); // Enable the pin for RTS function
} else if (type == FlowControlRTSCTS) {
MBED_ASSERT(uart_name != (UARTName) NC);
obj->FUARTx->CR |= (FUART_CTS_ENABLE | FUART_RTS_ENABLE); // Enable CTS and RTS hardware flow control
pinmap_pinout(txflow, PinMap_UART_CTS); // Enable the pin for CTS function
pinmap_pinout(rxflow, PinMap_UART_RTS); // Enable the pin for RTS function
pin_mode(txflow, PullUp);
} else {
obj->FUARTx->CR &= FUART_CTS_RTS_DISABLE_MASK; // Disable CTS and RTS hardware flow control
}
obj->FUARTx->CR |= FUARTxCR_UARTEN_ENABLE;
}
}
// Pause transmission
void serial_break_set(serial_t *obj)
{
if (!(obj->is_using_fuart)) {
obj->UARTx->TRANS |= 0x08;
} else {
obj->FUARTx->LCR_H |= FUARTxLCR_H_BRK_SEND;
}
}
// Switch to normal transmission
void serial_break_clear(serial_t *obj)
{
if (!(obj->is_using_fuart)) {
obj->UARTx->TRANS &= ~(0x08);
} else {
obj->FUARTx->LCR_H &= ~(FUARTxLCR_H_BRK_SEND);
}
}
static void uart_swreset(TSB_UART_TypeDef *UARTx)
{
while (((UARTx->SWRST) & UARTxSWRST_SWRSTF_MASK) == UARTxSWRST_SWRSTF_RUN) {
// No process
}
UARTx->SWRST = UARTxSWRST_SWRST_10;
UARTx->SWRST = UARTxSWRST_SWRST_01;
while (((UARTx->SWRST) & UARTxSWRST_SWRSTF_MASK) == UARTxSWRST_SWRSTF_RUN) {
// No process
}
}
static void fuart_init_config(TSB_FURT_TypeDef * FUARTx, FUART_InitTypeDef * InitStruct)
{
uint32_t tmp = 0U;
uint32_t fuartclk = 0U;
uint32_t ibd = 0U;
uint32_t fbd = 0U;
uint32_t br = InitStruct->BaudRate;
SystemCoreClockUpdate();
fuartclk = SystemCoreClock;
ibd = fuartclk / (16U * br);
fbd = (8U * fuartclk + br - 128U * ibd * br) / (2U * br);
if (fbd == 0U) {
fbd = 1U; //Fractional part of baud rate divisor can not be 0x00
} else {
}
FUARTx->BRD = ibd; // Set integer part of baud rate divisor
FUARTx->FBRD = fbd; // Set fractional part of baud rate divisor
tmp = FUARTx->LCR_H;
tmp &= LCR_H_WLEN_MASK;
tmp |= InitStruct->DataBits;
tmp &= LCR_H_STP2_MASK;
tmp |= InitStruct->StopBits;
tmp &= LCR_H_PARITY_MASK;
tmp |= InitStruct->Parity;
FUARTx->LCR_H = tmp; //Set DataBits, StopBits, Parity
tmp = FUARTx->CR;
tmp &= CR_FLOW_CTRL_MASK;
tmp |= InitStruct->FlowCtrl;
tmp &= CR_MODE_MASK;
tmp |= InitStruct->Mode;
FUARTx->CR = tmp;
}
const PinMap *serial_tx_pinmap()
{
return PinMap_UART_TX;
}
const PinMap *serial_rx_pinmap()
{
return PinMap_UART_RX;
}
const PinMap *serial_cts_pinmap()
{
return PinMap_UART_CTS;
}
const PinMap *serial_rts_pinmap()
{
return PinMap_UART_RTS;
}