mbed-os/cmsis/core_ca.h

2017 lines
74 KiB
C

/**************************************************************************//**
* @file core_ca.h
* @brief CMSIS Cortex-A Core Peripheral Access Layer Header File
* @version V1.00
* @date 22. Feb 2017
******************************************************************************/
/*
* Copyright (c) 2009-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifndef __CORE_CA_H_GENERIC
#define __CORE_CA_H_GENERIC
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/* CMSIS CA definitions */
#define __CA_CMSIS_VERSION_MAIN (1U) /*!< \brief [31:16] CMSIS HAL main version */
#define __CA_CMSIS_VERSION_SUB (0U) /*!< \brief [15:0] CMSIS HAL sub version */
#define __CA_CMSIS_VERSION ((__CA_CMSIS_VERSION_MAIN << 16U) | \
__CA_CMSIS_VERSION_SUB ) /*!< \brief CMSIS HAL version number */
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1U
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1U
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#elif defined ( __TMS470__ )
#if defined __TI_VFP_SUPPORT__
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1U
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1U
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1U
#else
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CA_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CA_H_DEPENDANT
#define __CORE_CA_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CA_REV
#define __CA_REV 0x0000U
#warning "__CA_REV not defined in device header file; using default!"
#endif
#ifndef __FPU_PRESENT
#define __FPU_PRESENT 0U
#warning "__FPU_PRESENT not defined in device header file; using default!"
#endif
#ifndef __MPU_PRESENT
#define __MPU_PRESENT 0U
#warning "__MPU_PRESENT not defined in device header file; using default!"
#endif
#ifndef __GIC_PRESENT
#define __GIC_PRESENT 1U
#warning "__GIC_PRESENT not defined in device header file; using default!"
#endif
#ifndef __TIM_PRESENT
#define __TIM_PRESENT 1U
#warning "__TIM_PRESENT not defined in device header file; using default!"
#endif
#ifndef __L2C_PRESENT
#define __L2C_PRESENT 0U
#warning "__L2C_PRESENT not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
#ifdef __cplusplus
#define __I volatile /*!< \brief Defines 'read only' permissions */
#else
#define __I volatile const /*!< \brief Defines 'read only' permissions */
#endif
#define __O volatile /*!< \brief Defines 'write only' permissions */
#define __IO volatile /*!< \brief Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*!< \brief Defines 'read only' structure member permissions */
#define __OM volatile /*!< \brief Defines 'write only' structure member permissions */
#define __IOM volatile /*!< \brief Defines 'read / write' structure member permissions */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- CPSR
- CP15 Registers
- L2C-310 Cache Controller
- Generic Interrupt Controller Distributor
- Generic Interrupt Controller Interface
******************************************************************************/
/* Core Register CPSR */
typedef union
{
struct
{
uint32_t M:5; /*!< \brief bit: 0.. 4 Mode field */
uint32_t T:1; /*!< \brief bit: 5 Thumb execution state bit */
uint32_t F:1; /*!< \brief bit: 6 FIQ mask bit */
uint32_t I:1; /*!< \brief bit: 7 IRQ mask bit */
uint32_t A:1; /*!< \brief bit: 8 Asynchronous abort mask bit */
uint32_t E:1; /*!< \brief bit: 9 Endianness execution state bit */
uint32_t IT1:6; /*!< \brief bit: 10..15 If-Then execution state bits 2-7 */
uint32_t GE:4; /*!< \brief bit: 16..19 Greater than or Equal flags */
uint32_t _reserved0:4; /*!< \brief bit: 20..23 Reserved */
uint32_t J:1; /*!< \brief bit: 24 Jazelle bit */
uint32_t IT0:2; /*!< \brief bit: 25..26 If-Then execution state bits 0-1 */
uint32_t Q:1; /*!< \brief bit: 27 Saturation condition flag */
uint32_t V:1; /*!< \brief bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< \brief bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< \brief bit: 30 Zero condition code flag */
uint32_t N:1; /*!< \brief bit: 31 Negative condition code flag */
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} CPSR_Type;
/* CPSR Register Definitions */
#define CPSR_N_Pos 31U /*!< \brief CPSR: N Position */
#define CPSR_N_Msk (1UL << CPSR_N_Pos) /*!< \brief CPSR: N Mask */
#define CPSR_Z_Pos 30U /*!< \brief CPSR: Z Position */
#define CPSR_Z_Msk (1UL << CPSR_Z_Pos) /*!< \brief CPSR: Z Mask */
#define CPSR_C_Pos 29U /*!< \brief CPSR: C Position */
#define CPSR_C_Msk (1UL << CPSR_C_Pos) /*!< \brief CPSR: C Mask */
#define CPSR_V_Pos 28U /*!< \brief CPSR: V Position */
#define CPSR_V_Msk (1UL << CPSR_V_Pos) /*!< \brief CPSR: V Mask */
#define CPSR_Q_Pos 27U /*!< \brief CPSR: Q Position */
#define CPSR_Q_Msk (1UL << CPSR_Q_Pos) /*!< \brief CPSR: Q Mask */
#define CPSR_IT0_Pos 25U /*!< \brief CPSR: IT0 Position */
#define CPSR_IT0_Msk (3UL << CPSR_IT0_Pos) /*!< \brief CPSR: IT0 Mask */
#define CPSR_J_Pos 24U /*!< \brief CPSR: J Position */
#define CPSR_J_Msk (1UL << CPSR_J_Pos) /*!< \brief CPSR: J Mask */
#define CPSR_GE_Pos 16U /*!< \brief CPSR: GE Position */
#define CPSR_GE_Msk (0xFUL << CPSR_GE_Pos) /*!< \brief CPSR: GE Mask */
#define CPSR_IT1_Pos 10U /*!< \brief CPSR: IT1 Position */
#define CPSR_IT1_Msk (0x3FUL << CPSR_IT1_Pos) /*!< \brief CPSR: IT1 Mask */
#define CPSR_E_Pos 9U /*!< \brief CPSR: E Position */
#define CPSR_E_Msk (1UL << CPSR_E_Pos) /*!< \brief CPSR: E Mask */
#define CPSR_A_Pos 8U /*!< \brief CPSR: A Position */
#define CPSR_A_Msk (1UL << CPSR_A_Pos) /*!< \brief CPSR: A Mask */
#define CPSR_I_Pos 7U /*!< \brief CPSR: I Position */
#define CPSR_I_Msk (1UL << CPSR_I_Pos) /*!< \brief CPSR: I Mask */
#define CPSR_F_Pos 6U /*!< \brief CPSR: F Position */
#define CPSR_F_Msk (1UL << CPSR_F_Pos) /*!< \brief CPSR: F Mask */
#define CPSR_T_Pos 5U /*!< \brief CPSR: T Position */
#define CPSR_T_Msk (1UL << CPSR_T_Pos) /*!< \brief CPSR: T Mask */
#define CPSR_M_Pos 0U /*!< \brief CPSR: M Position */
#define CPSR_M_Msk (0x1FUL << CPSR_M_Pos) /*!< \brief CPSR: M Mask */
/* CP15 Register SCTLR */
typedef union
{
struct
{
uint32_t M:1; /*!< \brief bit: 0 MMU enable */
uint32_t A:1; /*!< \brief bit: 1 Alignment check enable */
uint32_t C:1; /*!< \brief bit: 2 Cache enable */
uint32_t _reserved0:2; /*!< \brief bit: 3.. 4 Reserved */
uint32_t CP15BEN:1; /*!< \brief bit: 5 CP15 barrier enable */
uint32_t _reserved1:1; /*!< \brief bit: 6 Reserved */
uint32_t B:1; /*!< \brief bit: 7 Endianness model */
uint32_t _reserved2:2; /*!< \brief bit: 8.. 9 Reserved */
uint32_t SW:1; /*!< \brief bit: 10 SWP and SWPB enable */
uint32_t Z:1; /*!< \brief bit: 11 Branch prediction enable */
uint32_t I:1; /*!< \brief bit: 12 Instruction cache enable */
uint32_t V:1; /*!< \brief bit: 13 Vectors bit */
uint32_t RR:1; /*!< \brief bit: 14 Round Robin select */
uint32_t _reserved3:2; /*!< \brief bit:15..16 Reserved */
uint32_t HA:1; /*!< \brief bit: 17 Hardware Access flag enable */
uint32_t _reserved4:1; /*!< \brief bit: 18 Reserved */
uint32_t WXN:1; /*!< \brief bit: 19 Write permission implies XN */
uint32_t UWXN:1; /*!< \brief bit: 20 Unprivileged write permission implies PL1 XN */
uint32_t FI:1; /*!< \brief bit: 21 Fast interrupts configuration enable */
uint32_t U:1; /*!< \brief bit: 22 Alignment model */
uint32_t _reserved5:1; /*!< \brief bit: 23 Reserved */
uint32_t VE:1; /*!< \brief bit: 24 Interrupt Vectors Enable */
uint32_t EE:1; /*!< \brief bit: 25 Exception Endianness */
uint32_t _reserved6:1; /*!< \brief bit: 26 Reserved */
uint32_t NMFI:1; /*!< \brief bit: 27 Non-maskable FIQ (NMFI) support */
uint32_t TRE:1; /*!< \brief bit: 28 TEX remap enable. */
uint32_t AFE:1; /*!< \brief bit: 29 Access flag enable */
uint32_t TE:1; /*!< \brief bit: 30 Thumb Exception enable */
uint32_t _reserved7:1; /*!< \brief bit: 31 Reserved */
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} SCTLR_Type;
#define SCTLR_TE_Pos 30U /*!< \brief SCTLR: TE Position */
#define SCTLR_TE_Msk (1UL << SCTLR_TE_Pos) /*!< \brief SCTLR: TE Mask */
#define SCTLR_AFE_Pos 29U /*!< \brief SCTLR: AFE Position */
#define SCTLR_AFE_Msk (1UL << SCTLR_AFE_Pos) /*!< \brief SCTLR: AFE Mask */
#define SCTLR_TRE_Pos 28U /*!< \brief SCTLR: TRE Position */
#define SCTLR_TRE_Msk (1UL << SCTLR_TRE_Pos) /*!< \brief SCTLR: TRE Mask */
#define SCTLR_NMFI_Pos 27U /*!< \brief SCTLR: NMFI Position */
#define SCTLR_NMFI_Msk (1UL << SCTLR_NMFI_Pos) /*!< \brief SCTLR: NMFI Mask */
#define SCTLR_EE_Pos 25U /*!< \brief SCTLR: EE Position */
#define SCTLR_EE_Msk (1UL << SCTLR_EE_Pos) /*!< \brief SCTLR: EE Mask */
#define SCTLR_VE_Pos 24U /*!< \brief SCTLR: VE Position */
#define SCTLR_VE_Msk (1UL << SCTLR_VE_Pos) /*!< \brief SCTLR: VE Mask */
#define SCTLR_U_Pos 22U /*!< \brief SCTLR: U Position */
#define SCTLR_U_Msk (1UL << SCTLR_U_Pos) /*!< \brief SCTLR: U Mask */
#define SCTLR_FI_Pos 21U /*!< \brief SCTLR: FI Position */
#define SCTLR_FI_Msk (1UL << SCTLR_FI_Pos) /*!< \brief SCTLR: FI Mask */
#define SCTLR_UWXN_Pos 20U /*!< \brief SCTLR: UWXN Position */
#define SCTLR_UWXN_Msk (1UL << SCTLR_UWXN_Pos) /*!< \brief SCTLR: UWXN Mask */
#define SCTLR_WXN_Pos 19U /*!< \brief SCTLR: WXN Position */
#define SCTLR_WXN_Msk (1UL << SCTLR_WXN_Pos) /*!< \brief SCTLR: WXN Mask */
#define SCTLR_HA_Pos 17U /*!< \brief SCTLR: HA Position */
#define SCTLR_HA_Msk (1UL << SCTLR_HA_Pos) /*!< \brief SCTLR: HA Mask */
#define SCTLR_RR_Pos 14U /*!< \brief SCTLR: RR Position */
#define SCTLR_RR_Msk (1UL << SCTLR_RR_Pos) /*!< \brief SCTLR: RR Mask */
#define SCTLR_V_Pos 13U /*!< \brief SCTLR: V Position */
#define SCTLR_V_Msk (1UL << SCTLR_V_Pos) /*!< \brief SCTLR: V Mask */
#define SCTLR_I_Pos 12U /*!< \brief SCTLR: I Position */
#define SCTLR_I_Msk (1UL << SCTLR_I_Pos) /*!< \brief SCTLR: I Mask */
#define SCTLR_Z_Pos 11U /*!< \brief SCTLR: Z Position */
#define SCTLR_Z_Msk (1UL << SCTLR_Z_Pos) /*!< \brief SCTLR: Z Mask */
#define SCTLR_SW_Pos 10U /*!< \brief SCTLR: SW Position */
#define SCTLR_SW_Msk (1UL << SCTLR_SW_Pos) /*!< \brief SCTLR: SW Mask */
#define SCTLR_B_Pos 7U /*!< \brief SCTLR: B Position */
#define SCTLR_B_Msk (1UL << SCTLR_B_Pos) /*!< \brief SCTLR: B Mask */
#define SCTLR_CP15BEN_Pos 5U /*!< \brief SCTLR: CP15BEN Position */
#define SCTLR_CP15BEN_Msk (1UL << SCTLR_CP15BEN_Pos) /*!< \brief SCTLR: CP15BEN Mask */
#define SCTLR_C_Pos 2U /*!< \brief SCTLR: C Position */
#define SCTLR_C_Msk (1UL << SCTLR_C_Pos) /*!< \brief SCTLR: C Mask */
#define SCTLR_A_Pos 1U /*!< \brief SCTLR: A Position */
#define SCTLR_A_Msk (1UL << SCTLR_A_Pos) /*!< \brief SCTLR: A Mask */
#define SCTLR_M_Pos 0U /*!< \brief SCTLR: M Position */
#define SCTLR_M_Msk (1UL << SCTLR_M_Pos) /*!< \brief SCTLR: M Mask */
/* CP15 Register CPACR */
typedef union
{
struct
{
uint32_t _reserved0:20; /*!< \brief bit: 0..19 Reserved */
uint32_t cp10:2; /*!< \brief bit:20..21 Access rights for coprocessor 10 */
uint32_t cp11:2; /*!< \brief bit:22..23 Access rights for coprocessor 11 */
uint32_t _reserved1:6; /*!< \brief bit:24..29 Reserved */
uint32_t D32DIS:1; /*!< \brief bit: 30 Disable use of registers D16-D31 of the VFP register file */
uint32_t ASEDIS:1; /*!< \brief bit: 31 Disable Advanced SIMD Functionality */
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} CPACR_Type;
#define CPACR_ASEDIS_Pos 31U /*!< \brief CPACR: ASEDIS Position */
#define CPACR_ASEDIS_Msk (1UL << CPACR_ASEDIS_Pos) /*!< \brief CPACR: ASEDIS Mask */
#define CPACR_D32DIS_Pos 30U /*!< \brief CPACR: D32DIS Position */
#define CPACR_D32DIS_Msk (1UL << CPACR_D32DIS_Pos) /*!< \brief CPACR: D32DIS Mask */
#define CPACR_cp11_Pos 22U /*!< \brief CPACR: cp11 Position */
#define CPACR_cp11_Msk (3UL << CPACR_cp11_Pos) /*!< \brief CPACR: cp11 Mask */
#define CPACR_cp10_Pos 20U /*!< \brief CPACR: cp10 Position */
#define CPACR_cp10_Msk (3UL << CPACR_cp10_Pos) /*!< \brief CPACR: cp10 Mask */
/* CP15 Register DFSR */
typedef union
{
struct
{
uint32_t FS0:4; /*!< \brief bit: 0.. 3 Fault Status bits bit 0-3 */
uint32_t Domain:4; /*!< \brief bit: 4.. 7 Fault on which domain */
uint32_t _reserved0:2; /*!< \brief bit: 8.. 9 Reserved */
uint32_t FS1:1; /*!< \brief bit: 10 Fault Status bits bit 4 */
uint32_t WnR:1; /*!< \brief bit: 11 Write not Read bit */
uint32_t ExT:1; /*!< \brief bit: 12 External abort type */
uint32_t CM:1; /*!< \brief bit: 13 Cache maintenance fault */
uint32_t _reserved1:18; /*!< \brief bit:14..31 Reserved */
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} DFSR_Type;
#define DFSR_CM_Pos 13U /*!< \brief DFSR: CM Position */
#define DFSR_CM_Msk (1UL << DFSR_CM_Pos) /*!< \brief DFSR: CM Mask */
#define DFSR_Ext_Pos 12U /*!< \brief DFSR: Ext Position */
#define DFSR_Ext_Msk (1UL << DFSR_Ext_Pos) /*!< \brief DFSR: Ext Mask */
#define DFSR_WnR_Pos 11U /*!< \brief DFSR: WnR Position */
#define DFSR_WnR_Msk (1UL << DFSR_WnR_Pos) /*!< \brief DFSR: WnR Mask */
#define DFSR_FS1_Pos 10U /*!< \brief DFSR: FS1 Position */
#define DFSR_FS1_Msk (1UL << DFSR_FS1_Pos) /*!< \brief DFSR: FS1 Mask */
#define DFSR_Domain_Pos 4U /*!< \brief DFSR: Domain Position */
#define DFSR_Domain_Msk (0xFUL << DFSR_Domain_Pos) /*!< \brief DFSR: Domain Mask */
#define DFSR_FS0_Pos 0U /*!< \brief DFSR: FS0 Position */
#define DFSR_FS0_Msk (0xFUL << DFSR_FS0_Pos) /*!< \brief DFSR: FS0 Mask */
/* CP15 Register IFSR */
typedef union
{
struct
{
uint32_t FS0:4; /*!< \brief bit: 0.. 3 Fault Status bits bit 0-3 */
uint32_t _reserved0:6; /*!< \brief bit: 4.. 9 Reserved */
uint32_t FS1:1; /*!< \brief bit: 10 Fault Status bits bit 4 */
uint32_t _reserved1:1; /*!< \brief bit: 11 Reserved */
uint32_t ExT:1; /*!< \brief bit: 12 External abort type */
uint32_t _reserved2:19; /*!< \brief bit:13..31 Reserved */
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} IFSR_Type;
#define IFSR_ExT_Pos 12U /*!< \brief IFSR: ExT Position */
#define IFSR_ExT_Msk (1UL << IFSR_ExT_Pos) /*!< \brief IFSR: ExT Mask */
#define IFSR_FS1_Pos 10U /*!< \brief IFSR: FS1 Position */
#define IFSR_FS1_Msk (1UL << IFSR_FS1_Pos) /*!< \brief IFSR: FS1 Mask */
#define IFSR_FS0_Pos 0U /*!< \brief IFSR: FS0 Position */
#define IFSR_FS0_Msk (0xFUL << IFSR_FS0_Pos) /*!< \brief IFSR: FS0 Mask */
/* CP15 Register ISR */
typedef union
{
struct
{
uint32_t _reserved0:6; /*!< \brief bit: 0.. 5 Reserved */
uint32_t F:1; /*!< \brief bit: 6 FIQ pending bit */
uint32_t I:1; /*!< \brief bit: 7 IRQ pending bit */
uint32_t A:1; /*!< \brief bit: 8 External abort pending bit */
uint32_t _reserved1:23; /*!< \brief bit:14..31 Reserved */
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} ISR_Type;
#define ISR_A_Pos 13U /*!< \brief ISR: A Position */
#define ISR_A_Msk (1UL << ISR_A_Pos) /*!< \brief ISR: A Mask */
#define ISR_I_Pos 12U /*!< \brief ISR: I Position */
#define ISR_I_Msk (1UL << ISR_I_Pos) /*!< \brief ISR: I Mask */
#define ISR_F_Pos 11U /*!< \brief ISR: F Position */
#define ISR_F_Msk (1UL << ISR_F_Pos) /*!< \brief ISR: F Mask */
/**
\brief Union type to access the L2C_310 Cache Controller.
*/
#if (__L2C_PRESENT == 1U)
typedef struct
{
__I uint32_t CACHE_ID; /*!< \brief Offset: 0x0000 Cache ID Register */
__I uint32_t CACHE_TYPE; /*!< \brief Offset: 0x0004 Cache Type Register */
uint32_t RESERVED0[0x3e];
__IO uint32_t CONTROL; /*!< \brief Offset: 0x0100 Control Register */
__IO uint32_t AUX_CNT; /*!< \brief Offset: 0x0104 Auxiliary Control */
uint32_t RESERVED1[0x3e];
__IO uint32_t EVENT_CONTROL; /*!< \brief Offset: 0x0200 Event Counter Control */
__IO uint32_t EVENT_COUNTER1_CONF; /*!< \brief Offset: 0x0204 Event Counter 1 Configuration */
__IO uint32_t EVENT_COUNTER0_CONF; /*!< \brief Offset: 0x0208 Event Counter 1 Configuration */
uint32_t RESERVED2[0x2];
__IO uint32_t INTERRUPT_MASK; /*!< \brief Offset: 0x0214 Interrupt Mask */
__I uint32_t MASKED_INT_STATUS; /*!< \brief Offset: 0x0218 Masked Interrupt Status */
__I uint32_t RAW_INT_STATUS; /*!< \brief Offset: 0x021c Raw Interrupt Status */
__O uint32_t INTERRUPT_CLEAR; /*!< \brief Offset: 0x0220 Interrupt Clear */
uint32_t RESERVED3[0x143];
__IO uint32_t CACHE_SYNC; /*!< \brief Offset: 0x0730 Cache Sync */
uint32_t RESERVED4[0xf];
__IO uint32_t INV_LINE_PA; /*!< \brief Offset: 0x0770 Invalidate Line By PA */
uint32_t RESERVED6[2];
__IO uint32_t INV_WAY; /*!< \brief Offset: 0x077c Invalidate by Way */
uint32_t RESERVED5[0xc];
__IO uint32_t CLEAN_LINE_PA; /*!< \brief Offset: 0x07b0 Clean Line by PA */
uint32_t RESERVED7[1];
__IO uint32_t CLEAN_LINE_INDEX_WAY; /*!< \brief Offset: 0x07b8 Clean Line by Index/Way */
__IO uint32_t CLEAN_WAY; /*!< \brief Offset: 0x07bc Clean by Way */
uint32_t RESERVED8[0xc];
__IO uint32_t CLEAN_INV_LINE_PA; /*!< \brief Offset: 0x07f0 Clean and Invalidate Line by PA */
uint32_t RESERVED9[1];
__IO uint32_t CLEAN_INV_LINE_INDEX_WAY; /*!< \brief Offset: 0x07f8 Clean and Invalidate Line by Index/Way */
__IO uint32_t CLEAN_INV_WAY; /*!< \brief Offset: 0x07fc Clean and Invalidate by Way */
uint32_t RESERVED10[0x40];
__IO uint32_t DATA_LOCK_0_WAY; /*!< \brief Offset: 0x0900 Data Lockdown 0 by Way */
__IO uint32_t INST_LOCK_0_WAY; /*!< \brief Offset: 0x0904 Instruction Lockdown 0 by Way */
__IO uint32_t DATA_LOCK_1_WAY; /*!< \brief Offset: 0x0908 Data Lockdown 1 by Way */
__IO uint32_t INST_LOCK_1_WAY; /*!< \brief Offset: 0x090c Instruction Lockdown 1 by Way */
__IO uint32_t DATA_LOCK_2_WAY; /*!< \brief Offset: 0x0910 Data Lockdown 2 by Way */
__IO uint32_t INST_LOCK_2_WAY; /*!< \brief Offset: 0x0914 Instruction Lockdown 2 by Way */
__IO uint32_t DATA_LOCK_3_WAY; /*!< \brief Offset: 0x0918 Data Lockdown 3 by Way */
__IO uint32_t INST_LOCK_3_WAY; /*!< \brief Offset: 0x091c Instruction Lockdown 3 by Way */
__IO uint32_t DATA_LOCK_4_WAY; /*!< \brief Offset: 0x0920 Data Lockdown 4 by Way */
__IO uint32_t INST_LOCK_4_WAY; /*!< \brief Offset: 0x0924 Instruction Lockdown 4 by Way */
__IO uint32_t DATA_LOCK_5_WAY; /*!< \brief Offset: 0x0928 Data Lockdown 5 by Way */
__IO uint32_t INST_LOCK_5_WAY; /*!< \brief Offset: 0x092c Instruction Lockdown 5 by Way */
__IO uint32_t DATA_LOCK_6_WAY; /*!< \brief Offset: 0x0930 Data Lockdown 5 by Way */
__IO uint32_t INST_LOCK_6_WAY; /*!< \brief Offset: 0x0934 Instruction Lockdown 5 by Way */
__IO uint32_t DATA_LOCK_7_WAY; /*!< \brief Offset: 0x0938 Data Lockdown 6 by Way */
__IO uint32_t INST_LOCK_7_WAY; /*!< \brief Offset: 0x093c Instruction Lockdown 6 by Way */
uint32_t RESERVED11[0x4];
__IO uint32_t LOCK_LINE_EN; /*!< \brief Offset: 0x0950 Lockdown by Line Enable */
__IO uint32_t UNLOCK_ALL_BY_WAY; /*!< \brief Offset: 0x0954 Unlock All Lines by Way */
uint32_t RESERVED12[0xaa];
__IO uint32_t ADDRESS_FILTER_START; /*!< \brief Offset: 0x0c00 Address Filtering Start */
__IO uint32_t ADDRESS_FILTER_END; /*!< \brief Offset: 0x0c04 Address Filtering End */
uint32_t RESERVED13[0xce];
__IO uint32_t DEBUG_CONTROL; /*!< \brief Offset: 0x0f40 Debug Control Register */
} L2C_310_TypeDef;
#define L2C_310 ((L2C_310_TypeDef *)L2C_310_BASE) /*!< \brief L2C_310 Declaration */
#endif
#if (__GIC_PRESENT == 1U)
/** \brief Structure type to access the Generic Interrupt Controller Distributor (GICD)
*/
typedef struct
{
__IO uint32_t ICDDCR;
__I uint32_t ICDICTR;
__I uint32_t ICDIIDR;
uint32_t RESERVED0[29];
__IO uint32_t ICDISR[32];
__IO uint32_t ICDISER[32];
__IO uint32_t ICDICER[32];
__IO uint32_t ICDISPR[32];
__IO uint32_t ICDICPR[32];
__I uint32_t ICDABR[32];
uint32_t RESERVED1[32];
__IO uint32_t ICDIPR[256];
__IO uint32_t ICDIPTR[256];
__IO uint32_t ICDICFR[64];
uint32_t RESERVED2[128];
__IO uint32_t ICDSGIR;
} GICDistributor_Type;
#define GICDistributor ((GICDistributor_Type *) GIC_DISTRIBUTOR_BASE ) /*!< GIC Distributor configuration struct */
/** \brief Structure type to access the Generic Interrupt Controller Interface (GICC)
*/
typedef struct
{
__IO uint32_t ICCICR; //!< \brief +0x000 - RW - CPU Interface Control Register
__IO uint32_t ICCPMR; //!< \brief +0x004 - RW - Interrupt Priority Mask Register
__IO uint32_t ICCBPR; //!< \brief +0x008 - RW - Binary Point Register
__I uint32_t ICCIAR; //!< \brief +0x00C - RO - Interrupt Acknowledge Register
__IO uint32_t ICCEOIR; //!< \brief +0x010 - WO - End of Interrupt Register
__I uint32_t ICCRPR; //!< \brief +0x014 - RO - Running Priority Register
__I uint32_t ICCHPIR; //!< \brief +0x018 - RO - Highest Pending Interrupt Register
__IO uint32_t ICCABPR; //!< \brief +0x01C - RW - Aliased Binary Point Register
uint32_t RESERVED[55];
__I uint32_t ICCIIDR; //!< \brief +0x0FC - RO - CPU Interface Identification Register
} GICInterface_Type;
#define GICInterface ((GICInterface_Type *) GIC_INTERFACE_BASE ) /*!< GIC Interface configuration struct */
#endif
#if (__TIM_PRESENT == 1U)
#if ((__CORTEX_A == 5U)||(__CORTEX_A == 9U))
/** \brief Structure type to access the Private Timer
*/
typedef struct
{
__IO uint32_t LOAD; //!< \brief +0x000 - RW - Private Timer Load Register
__IO uint32_t COUNTER; //!< \brief +0x004 - RW - Private Timer Counter Register
__IO uint32_t CONTROL; //!< \brief +0x008 - RW - Private Timer Control Register
__IO uint32_t ISR; //!< \brief +0x00C - RO - Private Timer Interrupt Status Register
uint32_t RESERVED[8];
__IO uint32_t WLOAD; //!< \brief +0x020 - RW - Watchdog Load Register
__IO uint32_t WCOUNTER; //!< \brief +0x024 - RW - Watchdog Counter Register
__IO uint32_t WCONTROL; //!< \brief +0x028 - RW - Watchdog Control Register
__IO uint32_t WISR; //!< \brief +0x02C - RW - Watchdog Interrupt Status Register
__IO uint32_t WRESET; //!< \brief +0x030 - RW - Watchdog Reset Status Register
__I uint32_t WDISABLE; //!< \brief +0x0FC - RO - Watchdog Disable Register
} Timer_Type;
#define PTIM ((Timer_Type *) TIMER_BASE ) /*!< \brief Timer configuration struct */
#endif
#endif
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- L1 Cache Functions
- L2C-310 Cache Controller Functions
- PL1 Timer Functions
- GIC Functions
- MMU Functions
******************************************************************************/
/* ########################## L1 Cache functions ################################# */
/** \brief Enable Caches
Enable Caches
*/
__STATIC_INLINE void L1C_EnableCaches(void) {
// Set I bit 12 to enable I Cache
// Set C bit 2 to enable D Cache
__set_SCTLR( __get_SCTLR() | (1 << 12) | (1 << 2));
}
/** \brief Disable Caches
Disable Caches
*/
__STATIC_INLINE void L1C_DisableCaches(void) {
// Clear I bit 12 to disable I Cache
// Clear C bit 2 to disable D Cache
__set_SCTLR( __get_SCTLR() & ~(1 << 12) & ~(1 << 2));
__ISB();
}
/** \brief Enable BTAC
Enable BTAC
*/
__STATIC_INLINE void L1C_EnableBTAC(void) {
// Set Z bit 11 to enable branch prediction
__set_SCTLR( __get_SCTLR() | (1 << 11));
__ISB();
}
/** \brief Disable BTAC
Disable BTAC
*/
__STATIC_INLINE void L1C_DisableBTAC(void) {
// Clear Z bit 11 to disable branch prediction
__set_SCTLR( __get_SCTLR() & ~(1 << 11));
}
/** \brief Invalidate entire branch predictor array
BPIALL. Branch Predictor Invalidate All.
*/
__STATIC_INLINE void L1C_InvalidateBTAC(void) {
__set_BPIALL(0);
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new state
}
/** \brief Invalidate the whole I$
ICIALLU. Instruction Cache Invalidate All to PoU
*/
__STATIC_INLINE void L1C_InvalidateICacheAll(void) {
__set_ICIALLU(0);
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new I cache state
}
/** \brief Clean D$ by MVA
DCCMVAC. Data cache clean by MVA to PoC
*/
__STATIC_INLINE void L1C_CleanDCacheMVA(void *va) {
__set_DCCMVAC((uint32_t)va);
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Invalidate D$ by MVA
DCIMVAC. Data cache invalidate by MVA to PoC
*/
__STATIC_INLINE void L1C_InvalidateDCacheMVA(void *va) {
__set_DCIMVAC((uint32_t)va);
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Clean and Invalidate D$ by MVA
DCCIMVAC. Data cache clean and invalidate by MVA to PoC
*/
__STATIC_INLINE void L1C_CleanInvalidateDCacheMVA(void *va) {
__set_DCCIMVAC((uint32_t)va);
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Clean and Invalidate the entire data or unified cache
Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency.
*/
__STATIC_INLINE void L1C_CleanInvalidateCache(uint32_t op) {
__L1C_CleanInvalidateCache(op); // compiler specific call
}
/** \brief Invalidate the whole D$
DCISW. Invalidate by Set/Way
*/
__STATIC_INLINE void L1C_InvalidateDCacheAll(void) {
L1C_CleanInvalidateCache(0);
}
/** \brief Clean the whole D$
DCCSW. Clean by Set/Way
*/
__STATIC_INLINE void L1C_CleanDCacheAll(void) {
L1C_CleanInvalidateCache(1);
}
/** \brief Clean and invalidate the whole D$
DCCISW. Clean and Invalidate by Set/Way
*/
__STATIC_INLINE void L1C_CleanInvalidateDCacheAll(void) {
L1C_CleanInvalidateCache(2);
}
/* ########################## L2 Cache functions ################################# */
#if (__L2C_PRESENT == 1U)
//Cache Sync operation
__STATIC_INLINE void L2C_Sync(void)
{
L2C_310->CACHE_SYNC = 0x0;
}
//return Cache controller cache ID
__STATIC_INLINE int L2C_GetID (void)
{
return L2C_310->CACHE_ID;
}
//return Cache controller cache Type
__STATIC_INLINE int L2C_GetType (void)
{
return L2C_310->CACHE_TYPE;
}
//Invalidate all cache by way
__STATIC_INLINE void L2C_InvAllByWay (void)
{
unsigned int assoc;
if (L2C_310->AUX_CNT & (1<<16))
assoc = 16;
else
assoc = 8;
L2C_310->INV_WAY = (1 << assoc) - 1;
while(L2C_310->INV_WAY & ((1 << assoc) - 1)); //poll invalidate
L2C_Sync();
}
//Clean and Invalidate all cache by way
__STATIC_INLINE void L2C_CleanInvAllByWay (void)
{
unsigned int assoc;
if (L2C_310->AUX_CNT & (1<<16))
assoc = 16;
else
assoc = 8;
L2C_310->CLEAN_INV_WAY = (1 << assoc) - 1;
while(L2C_310->CLEAN_INV_WAY & ((1 << assoc) - 1)); //poll invalidate
L2C_Sync();
}
//Enable Cache
__STATIC_INLINE void L2C_Enable(void)
{
L2C_310->CONTROL = 0;
L2C_310->INTERRUPT_CLEAR = 0x000001FFuL;
L2C_310->DEBUG_CONTROL = 0;
L2C_310->DATA_LOCK_0_WAY = 0;
L2C_310->CACHE_SYNC = 0;
L2C_310->CONTROL = 0x01;
L2C_Sync();
}
//Disable Cache
__STATIC_INLINE void L2C_Disable(void)
{
L2C_310->CONTROL = 0x00;
L2C_Sync();
}
//Invalidate cache by physical address
__STATIC_INLINE void L2C_InvPa (void *pa)
{
L2C_310->INV_LINE_PA = (unsigned int)pa;
L2C_Sync();
}
//Clean cache by physical address
__STATIC_INLINE void L2C_CleanPa (void *pa)
{
L2C_310->CLEAN_LINE_PA = (unsigned int)pa;
L2C_Sync();
}
//Clean and invalidate cache by physical address
__STATIC_INLINE void L2C_CleanInvPa (void *pa)
{
L2C_310->CLEAN_INV_LINE_PA = (unsigned int)pa;
L2C_Sync();
}
#endif
/* ########################## GIC functions ###################################### */
#if (__GIC_PRESENT == 1U)
__STATIC_INLINE void GIC_EnableDistributor(void)
{
GICDistributor->ICDDCR |= 1; //enable distributor
}
__STATIC_INLINE void GIC_DisableDistributor(void)
{
GICDistributor->ICDDCR &=~1; //disable distributor
}
__STATIC_INLINE uint32_t GIC_DistributorInfo(void)
{
return (uint32_t)(GICDistributor->ICDICTR);
}
__STATIC_INLINE uint32_t GIC_DistributorImplementer(void)
{
return (uint32_t)(GICDistributor->ICDIIDR);
}
__STATIC_INLINE void GIC_SetTarget(IRQn_Type IRQn, uint32_t cpu_target)
{
char* field = (char*)&(GICDistributor->ICDIPTR[IRQn / 4]);
field += IRQn % 4;
*field = (char)cpu_target & 0xf;
}
__STATIC_INLINE void GIC_SetICDICFR (const uint32_t *ICDICFRn)
{
uint32_t i, num_irq;
//Get the maximum number of interrupts that the GIC supports
num_irq = 32 * ((GIC_DistributorInfo() & 0x1f) + 1);
for (i = 0; i < (num_irq/16); i++)
{
GICDistributor->ICDISPR[i] = *ICDICFRn++;
}
}
__STATIC_INLINE uint32_t GIC_GetTarget(IRQn_Type IRQn)
{
char* field = (char*)&(GICDistributor->ICDIPTR[IRQn / 4]);
field += IRQn % 4;
return ((uint32_t)*field & 0xf);
}
__STATIC_INLINE void GIC_EnableInterface(void)
{
GICInterface->ICCICR |= 1; //enable interface
}
__STATIC_INLINE void GIC_DisableInterface(void)
{
GICInterface->ICCICR &=~1; //disable distributor
}
__STATIC_INLINE IRQn_Type GIC_AcknowledgePending(void)
{
return (IRQn_Type)(GICInterface->ICCIAR);
}
__STATIC_INLINE void GIC_EndInterrupt(IRQn_Type IRQn)
{
GICInterface->ICCEOIR = IRQn;
}
__STATIC_INLINE void GIC_EnableIRQ(IRQn_Type IRQn)
{
GICDistributor->ICDISER[IRQn / 32] = 1 << (IRQn % 32);
}
__STATIC_INLINE void GIC_DisableIRQ(IRQn_Type IRQn)
{
GICDistributor->ICDICER[IRQn / 32] = 1 << (IRQn % 32);
}
__STATIC_INLINE void GIC_SetPendingIRQ(IRQn_Type IRQn)
{
GICDistributor->ICDISPR[IRQn / 32] = 1 << (IRQn % 32);
}
__STATIC_INLINE void GIC_ClearPendingIRQ(IRQn_Type IRQn)
{
GICDistributor->ICDICPR[IRQn / 32] = 1 << (IRQn % 32);
}
__STATIC_INLINE void GIC_SetLevelModel(IRQn_Type IRQn, int8_t edge_level, int8_t model)
{
// Word-size read/writes must be used to access this register
volatile uint32_t * field = &(GICDistributor->ICDICFR[IRQn / 16]);
unsigned bit_shift = (IRQn % 16)<<1;
unsigned int save_word;
save_word = *field;
save_word &= (~(3 << bit_shift));
*field = (save_word | (((edge_level<<1) | model) << bit_shift));
}
__STATIC_INLINE void GIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
char* field = (char*)&(GICDistributor->ICDIPR[IRQn / 4]);
field += IRQn % 4;
*field = (char)priority;
}
__STATIC_INLINE uint32_t GIC_GetPriority(IRQn_Type IRQn)
{
char* field = (char*)&(GICDistributor->ICDIPR[IRQn / 4]);
field += IRQn % 4;
return (uint32_t)*field;
}
__STATIC_INLINE void GIC_InterfacePriorityMask(uint32_t priority)
{
GICInterface->ICCPMR = priority & 0xff; //set priority mask
}
__STATIC_INLINE void GIC_SetBinaryPoint(uint32_t binary_point)
{
GICInterface->ICCBPR = binary_point & 0x07; //set binary point
}
__STATIC_INLINE uint32_t GIC_GetBinaryPoint(uint32_t binary_point)
{
return (uint32_t)GICInterface->ICCBPR;
}
__STATIC_INLINE uint32_t GIC_GetIRQStatus(IRQn_Type IRQn)
{
uint32_t pending, active;
active = ((GICDistributor->ICDABR[IRQn / 32]) >> (IRQn % 32)) & 0x1;
pending =((GICDistributor->ICDISPR[IRQn / 32]) >> (IRQn % 32)) & 0x1;
return ((active<<1) | pending);
}
__STATIC_INLINE void GIC_SendSGI(IRQn_Type IRQn, uint32_t target_list, uint32_t filter_list)
{
GICDistributor->ICDSGIR = ((filter_list & 0x3) << 24) | ((target_list & 0xff) << 16) | (IRQn & 0xf);
}
__STATIC_INLINE void GIC_DistInit(void)
{
IRQn_Type i;
uint32_t num_irq = 0;
uint32_t priority_field;
//A reset sets all bits in the ICDISRs corresponding to the SPIs to 0,
//configuring all of the interrupts as Secure.
//Disable interrupt forwarding
GIC_DisableDistributor();
//Get the maximum number of interrupts that the GIC supports
num_irq = 32 * ((GIC_DistributorInfo() & 0x1f) + 1);
/* Priority level is implementation defined.
To determine the number of priority bits implemented write 0xFF to an ICDIPR
priority field and read back the value stored.*/
GIC_SetPriority((IRQn_Type)0, 0xff);
priority_field = GIC_GetPriority((IRQn_Type)0);
for (i = (IRQn_Type)32; i < num_irq; i++)
{
//Disable the SPI interrupt
GIC_DisableIRQ(i);
//Set level-sensitive and 1-N model
GIC_SetLevelModel(i, 0, 1);
//Set priority
GIC_SetPriority(i, priority_field/2);
//Set target list to CPU0
GIC_SetTarget(i, 1);
}
//Enable distributor
GIC_EnableDistributor();
}
__STATIC_INLINE void GIC_CPUInterfaceInit(void)
{
IRQn_Type i;
uint32_t priority_field;
//A reset sets all bits in the ICDISRs corresponding to the SPIs to 0,
//configuring all of the interrupts as Secure.
//Disable interrupt forwarding
GIC_DisableInterface();
/* Priority level is implementation defined.
To determine the number of priority bits implemented write 0xFF to an ICDIPR
priority field and read back the value stored.*/
GIC_SetPriority((IRQn_Type)0, 0xff);
priority_field = GIC_GetPriority((IRQn_Type)0);
//SGI and PPI
for (i = (IRQn_Type)0; i < 32; i++)
{
//Set level-sensitive and 1-N model for PPI
if(i > 15)
GIC_SetLevelModel(i, 0, 1);
//Disable SGI and PPI interrupts
GIC_DisableIRQ(i);
//Set priority
GIC_SetPriority(i, priority_field/2);
}
//Enable interface
GIC_EnableInterface();
//Set binary point to 0
GIC_SetBinaryPoint(0);
//Set priority mask
GIC_InterfacePriorityMask(0xff);
}
__STATIC_INLINE void GIC_Enable(void)
{
GIC_DistInit();
GIC_CPUInterfaceInit(); //per CPU
}
#endif
/* ########################## Generic Timer functions ############################ */
#if (__TIM_PRESENT == 1U)
/* PL1 Physical Timer */
#if (__CORTEX_A == 7U)
__STATIC_INLINE void PL1_SetLoadValue(uint32_t value) {
__set_CNTP_TVAL(value);
__ISB();
}
__STATIC_INLINE uint32_t PL1_GetCurrentValue() {
return(__get_CNTP_TVAL());
}
__STATIC_INLINE void PL1_SetControl(uint32_t value) {
__set_CNTP_CTL(value);
__ISB();
}
/* Private Timer */
#elif ((__CORTEX_A == 5U)||(__CORTEX_A == 9U))
__STATIC_INLINE void PTIM_SetLoadValue(uint32_t value) {
PTIM->LOAD = value;
}
__STATIC_INLINE uint32_t PTIM_GetLoadValue() {
return(PTIM->LOAD);
}
__STATIC_INLINE uint32_t PTIM_GetCurrentValue() {
return(PTIM->COUNTER);
}
__STATIC_INLINE void PTIM_SetControl(uint32_t value) {
PTIM->CONTROL = value;
}
__STATIC_INLINE uint32_t PTIM_GetControl(void) {
return(PTIM->CONTROL);
}
__STATIC_INLINE void PTIM_ClearEventFlag(void) {
PTIM->ISR = 1;
}
#endif
#endif
/* ########################## MMU functions ###################################### */
#define SECTION_DESCRIPTOR (0x2)
#define SECTION_MASK (0xFFFFFFFC)
#define SECTION_TEXCB_MASK (0xFFFF8FF3)
#define SECTION_B_SHIFT (2)
#define SECTION_C_SHIFT (3)
#define SECTION_TEX0_SHIFT (12)
#define SECTION_TEX1_SHIFT (13)
#define SECTION_TEX2_SHIFT (14)
#define SECTION_XN_MASK (0xFFFFFFEF)
#define SECTION_XN_SHIFT (4)
#define SECTION_DOMAIN_MASK (0xFFFFFE1F)
#define SECTION_DOMAIN_SHIFT (5)
#define SECTION_P_MASK (0xFFFFFDFF)
#define SECTION_P_SHIFT (9)
#define SECTION_AP_MASK (0xFFFF73FF)
#define SECTION_AP_SHIFT (10)
#define SECTION_AP2_SHIFT (15)
#define SECTION_S_MASK (0xFFFEFFFF)
#define SECTION_S_SHIFT (16)
#define SECTION_NG_MASK (0xFFFDFFFF)
#define SECTION_NG_SHIFT (17)
#define SECTION_NS_MASK (0xFFF7FFFF)
#define SECTION_NS_SHIFT (19)
#define PAGE_L1_DESCRIPTOR (0x1)
#define PAGE_L1_MASK (0xFFFFFFFC)
#define PAGE_L2_4K_DESC (0x2)
#define PAGE_L2_4K_MASK (0xFFFFFFFD)
#define PAGE_L2_64K_DESC (0x1)
#define PAGE_L2_64K_MASK (0xFFFFFFFC)
#define PAGE_4K_TEXCB_MASK (0xFFFFFE33)
#define PAGE_4K_B_SHIFT (2)
#define PAGE_4K_C_SHIFT (3)
#define PAGE_4K_TEX0_SHIFT (6)
#define PAGE_4K_TEX1_SHIFT (7)
#define PAGE_4K_TEX2_SHIFT (8)
#define PAGE_64K_TEXCB_MASK (0xFFFF8FF3)
#define PAGE_64K_B_SHIFT (2)
#define PAGE_64K_C_SHIFT (3)
#define PAGE_64K_TEX0_SHIFT (12)
#define PAGE_64K_TEX1_SHIFT (13)
#define PAGE_64K_TEX2_SHIFT (14)
#define PAGE_TEXCB_MASK (0xFFFF8FF3)
#define PAGE_B_SHIFT (2)
#define PAGE_C_SHIFT (3)
#define PAGE_TEX_SHIFT (12)
#define PAGE_XN_4K_MASK (0xFFFFFFFE)
#define PAGE_XN_4K_SHIFT (0)
#define PAGE_XN_64K_MASK (0xFFFF7FFF)
#define PAGE_XN_64K_SHIFT (15)
#define PAGE_DOMAIN_MASK (0xFFFFFE1F)
#define PAGE_DOMAIN_SHIFT (5)
#define PAGE_P_MASK (0xFFFFFDFF)
#define PAGE_P_SHIFT (9)
#define PAGE_AP_MASK (0xFFFFFDCF)
#define PAGE_AP_SHIFT (4)
#define PAGE_AP2_SHIFT (9)
#define PAGE_S_MASK (0xFFFFFBFF)
#define PAGE_S_SHIFT (10)
#define PAGE_NG_MASK (0xFFFFF7FF)
#define PAGE_NG_SHIFT (11)
#define PAGE_NS_MASK (0xFFFFFFF7)
#define PAGE_NS_SHIFT (3)
#define OFFSET_1M (0x00100000)
#define OFFSET_64K (0x00010000)
#define OFFSET_4K (0x00001000)
#define DESCRIPTOR_FAULT (0x00000000)
/* Attributes enumerations */
/* Region size attributes */
typedef enum
{
SECTION,
PAGE_4k,
PAGE_64k,
} mmu_region_size_Type;
/* Region type attributes */
typedef enum
{
NORMAL,
DEVICE,
SHARED_DEVICE,
NON_SHARED_DEVICE,
STRONGLY_ORDERED
} mmu_memory_Type;
/* Region cacheability attributes */
typedef enum
{
NON_CACHEABLE,
WB_WA,
WT,
WB_NO_WA,
} mmu_cacheability_Type;
/* Region parity check attributes */
typedef enum
{
ECC_DISABLED,
ECC_ENABLED,
} mmu_ecc_check_Type;
/* Region execution attributes */
typedef enum
{
EXECUTE,
NON_EXECUTE,
} mmu_execute_Type;
/* Region global attributes */
typedef enum
{
GLOBAL,
NON_GLOBAL,
} mmu_global_Type;
/* Region shareability attributes */
typedef enum
{
NON_SHARED,
SHARED,
} mmu_shared_Type;
/* Region security attributes */
typedef enum
{
SECURE,
NON_SECURE,
} mmu_secure_Type;
/* Region access attributes */
typedef enum
{
NO_ACCESS,
RW,
READ,
} mmu_access_Type;
/* Memory Region definition */
typedef struct RegionStruct {
mmu_region_size_Type rg_t;
mmu_memory_Type mem_t;
uint8_t domain;
mmu_cacheability_Type inner_norm_t;
mmu_cacheability_Type outer_norm_t;
mmu_ecc_check_Type e_t;
mmu_execute_Type xn_t;
mmu_global_Type g_t;
mmu_secure_Type sec_t;
mmu_access_Type priv_t;
mmu_access_Type user_t;
mmu_shared_Type sh_t;
} mmu_region_attributes_Type;
//Following macros define the descriptors and attributes
//Sect_Normal. Outer & inner wb/wa, non-shareable, executable, rw, domain 0
#define section_normal(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = WB_WA; \
region.outer_norm_t = WB_WA; \
region.mem_t = NORMAL; \
region.sec_t = SECURE; \
region.xn_t = EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Normal_Cod. Outer & inner wb/wa, non-shareable, executable, ro, domain 0
#define section_normal_cod(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = WB_WA; \
region.outer_norm_t = WB_WA; \
region.mem_t = NORMAL; \
region.sec_t = SECURE; \
region.xn_t = EXECUTE; \
region.priv_t = READ; \
region.user_t = READ; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Normal_RO. Sect_Normal_Cod, but not executable
#define section_normal_ro(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = WB_WA; \
region.outer_norm_t = WB_WA; \
region.mem_t = NORMAL; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = READ; \
region.user_t = READ; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Normal_RW. Sect_Normal_Cod, but writeable and not executable
#define section_normal_rw(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = WB_WA; \
region.outer_norm_t = WB_WA; \
region.mem_t = NORMAL; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_SO. Strongly-ordered (therefore shareable), not executable, rw, domain 0, base addr 0
#define section_so(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = STRONGLY_ORDERED; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Device_RO. Device, non-shareable, non-executable, ro, domain 0, base addr 0
#define section_device_ro(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = STRONGLY_ORDERED; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = READ; \
region.user_t = READ; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Device_RW. Sect_Device_RO, but writeable
#define section_device_rw(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = STRONGLY_ORDERED; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Page_4k_Device_RW. Shared device, not executable, rw, domain 0
#define page4k_device_rw(descriptor_l1, descriptor_l2, region) region.rg_t = PAGE_4k; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = SHARED_DEVICE; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetPageDescriptor(&descriptor_l1, &descriptor_l2, region);
//Page_64k_Device_RW. Shared device, not executable, rw, domain 0
#define page64k_device_rw(descriptor_l1, descriptor_l2, region) region.rg_t = PAGE_64k; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = SHARED_DEVICE; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetPageDescriptor(&descriptor_l1, &descriptor_l2, region);
/** \brief Set section execution-never attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] xn Section execution-never attribute : EXECUTE , NON_EXECUTE.
\return 0
*/
__STATIC_INLINE int MMU_XNSection(uint32_t *descriptor_l1, mmu_execute_Type xn)
{
*descriptor_l1 &= SECTION_XN_MASK;
*descriptor_l1 |= ((xn & 0x1) << SECTION_XN_SHIFT);
return 0;
}
/** \brief Set section domain
\param [out] descriptor_l1 L1 descriptor.
\param [in] domain Section domain
\return 0
*/
__STATIC_INLINE int MMU_DomainSection(uint32_t *descriptor_l1, uint8_t domain)
{
*descriptor_l1 &= SECTION_DOMAIN_MASK;
*descriptor_l1 |= ((domain & 0xF) << SECTION_DOMAIN_SHIFT);
return 0;
}
/** \brief Set section parity check
\param [out] descriptor_l1 L1 descriptor.
\param [in] p_bit Parity check: ECC_DISABLED, ECC_ENABLED
\return 0
*/
__STATIC_INLINE int MMU_PSection(uint32_t *descriptor_l1, mmu_ecc_check_Type p_bit)
{
*descriptor_l1 &= SECTION_P_MASK;
*descriptor_l1 |= ((p_bit & 0x1) << SECTION_P_SHIFT);
return 0;
}
/** \brief Set section access privileges
\param [out] descriptor_l1 L1 descriptor.
\param [in] user User Level Access: NO_ACCESS, RW, READ
\param [in] priv Privilege Level Access: NO_ACCESS, RW, READ
\param [in] afe Access flag enable
\return 0
*/
__STATIC_INLINE int MMU_APSection(uint32_t *descriptor_l1, mmu_access_Type user, mmu_access_Type priv, uint32_t afe)
{
uint32_t ap = 0;
if (afe == 0) { //full access
if ((priv == NO_ACCESS) && (user == NO_ACCESS)) { ap = 0x0; }
else if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == READ)) { ap = 0x2; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
else { //Simplified access
if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
*descriptor_l1 &= SECTION_AP_MASK;
*descriptor_l1 |= (ap & 0x3) << SECTION_AP_SHIFT;
*descriptor_l1 |= ((ap & 0x4)>>2) << SECTION_AP2_SHIFT;
return 0;
}
/** \brief Set section shareability
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit Section shareability: NON_SHARED, SHARED
\return 0
*/
__STATIC_INLINE int MMU_SharedSection(uint32_t *descriptor_l1, mmu_shared_Type s_bit)
{
*descriptor_l1 &= SECTION_S_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << SECTION_S_SHIFT);
return 0;
}
/** \brief Set section Global attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] g_bit Section attribute: GLOBAL, NON_GLOBAL
\return 0
*/
__STATIC_INLINE int MMU_GlobalSection(uint32_t *descriptor_l1, mmu_global_Type g_bit)
{
*descriptor_l1 &= SECTION_NG_MASK;
*descriptor_l1 |= ((g_bit & 0x1) << SECTION_NG_SHIFT);
return 0;
}
/** \brief Set section Security attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit Section Security attribute: SECURE, NON_SECURE
\return 0
*/
__STATIC_INLINE int MMU_SecureSection(uint32_t *descriptor_l1, mmu_secure_Type s_bit)
{
*descriptor_l1 &= SECTION_NS_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << SECTION_NS_SHIFT);
return 0;
}
/* Page 4k or 64k */
/** \brief Set 4k/64k page execution-never attribute
\param [out] descriptor_l2 L2 descriptor.
\param [in] xn Page execution-never attribute : EXECUTE , NON_EXECUTE.
\param [in] page Page size: PAGE_4k, PAGE_64k,
\return 0
*/
__STATIC_INLINE int MMU_XNPage(uint32_t *descriptor_l2, mmu_execute_Type xn, mmu_region_size_Type page)
{
if (page == PAGE_4k)
{
*descriptor_l2 &= PAGE_XN_4K_MASK;
*descriptor_l2 |= ((xn & 0x1) << PAGE_XN_4K_SHIFT);
}
else
{
*descriptor_l2 &= PAGE_XN_64K_MASK;
*descriptor_l2 |= ((xn & 0x1) << PAGE_XN_64K_SHIFT);
}
return 0;
}
/** \brief Set 4k/64k page domain
\param [out] descriptor_l1 L1 descriptor.
\param [in] domain Page domain
\return 0
*/
__STATIC_INLINE int MMU_DomainPage(uint32_t *descriptor_l1, uint8_t domain)
{
*descriptor_l1 &= PAGE_DOMAIN_MASK;
*descriptor_l1 |= ((domain & 0xf) << PAGE_DOMAIN_SHIFT);
return 0;
}
/** \brief Set 4k/64k page parity check
\param [out] descriptor_l1 L1 descriptor.
\param [in] p_bit Parity check: ECC_DISABLED, ECC_ENABLED
\return 0
*/
__STATIC_INLINE int MMU_PPage(uint32_t *descriptor_l1, mmu_ecc_check_Type p_bit)
{
*descriptor_l1 &= SECTION_P_MASK;
*descriptor_l1 |= ((p_bit & 0x1) << SECTION_P_SHIFT);
return 0;
}
/** \brief Set 4k/64k page access privileges
\param [out] descriptor_l2 L2 descriptor.
\param [in] user User Level Access: NO_ACCESS, RW, READ
\param [in] priv Privilege Level Access: NO_ACCESS, RW, READ
\param [in] afe Access flag enable
\return 0
*/
__STATIC_INLINE int MMU_APPage(uint32_t *descriptor_l2, mmu_access_Type user, mmu_access_Type priv, uint32_t afe)
{
uint32_t ap = 0;
if (afe == 0) { //full access
if ((priv == NO_ACCESS) && (user == NO_ACCESS)) { ap = 0x0; }
else if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == READ)) { ap = 0x2; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x6; }
}
else { //Simplified access
if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
*descriptor_l2 &= PAGE_AP_MASK;
*descriptor_l2 |= (ap & 0x3) << PAGE_AP_SHIFT;
*descriptor_l2 |= ((ap & 0x4)>>2) << PAGE_AP2_SHIFT;
return 0;
}
/** \brief Set 4k/64k page shareability
\param [out] descriptor_l2 L2 descriptor.
\param [in] s_bit 4k/64k page shareability: NON_SHARED, SHARED
\return 0
*/
__STATIC_INLINE int MMU_SharedPage(uint32_t *descriptor_l2, mmu_shared_Type s_bit)
{
*descriptor_l2 &= PAGE_S_MASK;
*descriptor_l2 |= ((s_bit & 0x1) << PAGE_S_SHIFT);
return 0;
}
/** \brief Set 4k/64k page Global attribute
\param [out] descriptor_l2 L2 descriptor.
\param [in] g_bit 4k/64k page attribute: GLOBAL, NON_GLOBAL
\return 0
*/
__STATIC_INLINE int MMU_GlobalPage(uint32_t *descriptor_l2, mmu_global_Type g_bit)
{
*descriptor_l2 &= PAGE_NG_MASK;
*descriptor_l2 |= ((g_bit & 0x1) << PAGE_NG_SHIFT);
return 0;
}
/** \brief Set 4k/64k page Security attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit 4k/64k page Security attribute: SECURE, NON_SECURE
\return 0
*/
__STATIC_INLINE int MMU_SecurePage(uint32_t *descriptor_l1, mmu_secure_Type s_bit)
{
*descriptor_l1 &= PAGE_NS_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << PAGE_NS_SHIFT);
return 0;
}
/** \brief Set Section memory attributes
\param [out] descriptor_l1 L1 descriptor.
\param [in] mem Section memory type: NORMAL, DEVICE, SHARED_DEVICE, NON_SHARED_DEVICE, STRONGLY_ORDERED
\param [in] outer Outer cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\param [in] inner Inner cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\return 0
*/
__STATIC_INLINE int MMU_MemorySection(uint32_t *descriptor_l1, mmu_memory_Type mem, mmu_cacheability_Type outer, mmu_cacheability_Type inner)
{
*descriptor_l1 &= SECTION_TEXCB_MASK;
if (STRONGLY_ORDERED == mem)
{
return 0;
}
else if (SHARED_DEVICE == mem)
{
*descriptor_l1 |= (1 << SECTION_B_SHIFT);
}
else if (NON_SHARED_DEVICE == mem)
{
*descriptor_l1 |= (1 << SECTION_TEX1_SHIFT);
}
else if (NORMAL == mem)
{
*descriptor_l1 |= 1 << SECTION_TEX2_SHIFT;
switch(inner)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l1 |= (1 << SECTION_B_SHIFT);
break;
case WT:
*descriptor_l1 |= 1 << SECTION_C_SHIFT;
break;
case WB_NO_WA:
*descriptor_l1 |= (1 << SECTION_B_SHIFT) | (1 << SECTION_C_SHIFT);
break;
}
switch(outer)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l1 |= (1 << SECTION_TEX0_SHIFT);
break;
case WT:
*descriptor_l1 |= 1 << SECTION_TEX1_SHIFT;
break;
case WB_NO_WA:
*descriptor_l1 |= (1 << SECTION_TEX0_SHIFT) | (1 << SECTION_TEX0_SHIFT);
break;
}
}
return 0;
}
/** \brief Set 4k/64k page memory attributes
\param [out] descriptor_l2 L2 descriptor.
\param [in] mem 4k/64k page memory type: NORMAL, DEVICE, SHARED_DEVICE, NON_SHARED_DEVICE, STRONGLY_ORDERED
\param [in] outer Outer cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\param [in] inner Inner cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\param [in] page Page size
\return 0
*/
__STATIC_INLINE int MMU_MemoryPage(uint32_t *descriptor_l2, mmu_memory_Type mem, mmu_cacheability_Type outer, mmu_cacheability_Type inner, mmu_region_size_Type page)
{
*descriptor_l2 &= PAGE_4K_TEXCB_MASK;
if (page == PAGE_64k)
{
//same as section
MMU_MemorySection(descriptor_l2, mem, outer, inner);
}
else
{
if (STRONGLY_ORDERED == mem)
{
return 0;
}
else if (SHARED_DEVICE == mem)
{
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT);
}
else if (NON_SHARED_DEVICE == mem)
{
*descriptor_l2 |= (1 << PAGE_4K_TEX1_SHIFT);
}
else if (NORMAL == mem)
{
*descriptor_l2 |= 1 << PAGE_4K_TEX2_SHIFT;
switch(inner)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT);
break;
case WT:
*descriptor_l2 |= 1 << PAGE_4K_C_SHIFT;
break;
case WB_NO_WA:
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT) | (1 << PAGE_4K_C_SHIFT);
break;
}
switch(outer)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l2 |= (1 << PAGE_4K_TEX0_SHIFT);
break;
case WT:
*descriptor_l2 |= 1 << PAGE_4K_TEX1_SHIFT;
break;
case WB_NO_WA:
*descriptor_l2 |= (1 << PAGE_4K_TEX0_SHIFT) | (1 << PAGE_4K_TEX0_SHIFT);
break;
}
}
}
return 0;
}
/** \brief Create a L1 section descriptor
\param [out] descriptor L1 descriptor
\param [in] reg Section attributes
\return 0
*/
__STATIC_INLINE int MMU_GetSectionDescriptor(uint32_t *descriptor, mmu_region_attributes_Type reg)
{
*descriptor = 0;
MMU_MemorySection(descriptor, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t);
MMU_XNSection(descriptor,reg.xn_t);
MMU_DomainSection(descriptor, reg.domain);
MMU_PSection(descriptor, reg.e_t);
MMU_APSection(descriptor, reg.priv_t, reg.user_t, 1);
MMU_SharedSection(descriptor,reg.sh_t);
MMU_GlobalSection(descriptor,reg.g_t);
MMU_SecureSection(descriptor,reg.sec_t);
*descriptor &= SECTION_MASK;
*descriptor |= SECTION_DESCRIPTOR;
return 0;
}
/** \brief Create a L1 and L2 4k/64k page descriptor
\param [out] descriptor L1 descriptor
\param [out] descriptor2 L2 descriptor
\param [in] reg 4k/64k page attributes
\return 0
*/
__STATIC_INLINE int MMU_GetPageDescriptor(uint32_t *descriptor, uint32_t *descriptor2, mmu_region_attributes_Type reg)
{
*descriptor = 0;
*descriptor2 = 0;
switch (reg.rg_t)
{
case PAGE_4k:
MMU_MemoryPage(descriptor2, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t, PAGE_4k);
MMU_XNPage(descriptor2, reg.xn_t, PAGE_4k);
MMU_DomainPage(descriptor, reg.domain);
MMU_PPage(descriptor, reg.e_t);
MMU_APPage(descriptor2, reg.priv_t, reg.user_t, 1);
MMU_SharedPage(descriptor2,reg.sh_t);
MMU_GlobalPage(descriptor2,reg.g_t);
MMU_SecurePage(descriptor,reg.sec_t);
*descriptor &= PAGE_L1_MASK;
*descriptor |= PAGE_L1_DESCRIPTOR;
*descriptor2 &= PAGE_L2_4K_MASK;
*descriptor2 |= PAGE_L2_4K_DESC;
break;
case PAGE_64k:
MMU_MemoryPage(descriptor2, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t, PAGE_64k);
MMU_XNPage(descriptor2, reg.xn_t, PAGE_64k);
MMU_DomainPage(descriptor, reg.domain);
MMU_PPage(descriptor, reg.e_t);
MMU_APPage(descriptor2, reg.priv_t, reg.user_t, 1);
MMU_SharedPage(descriptor2,reg.sh_t);
MMU_GlobalPage(descriptor2,reg.g_t);
MMU_SecurePage(descriptor,reg.sec_t);
*descriptor &= PAGE_L1_MASK;
*descriptor |= PAGE_L1_DESCRIPTOR;
*descriptor2 &= PAGE_L2_64K_MASK;
*descriptor2 |= PAGE_L2_64K_DESC;
break;
case SECTION:
//error
break;
}
return 0;
}
/** \brief Create a 1MB Section
\param [in] ttb Translation table base address
\param [in] base_address Section base address
\param [in] count Number of sections to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
*/
__STATIC_INLINE void MMU_TTSection(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1)
{
uint32_t offset;
uint32_t entry;
uint32_t i;
offset = base_address >> 20;
entry = (base_address & 0xFFF00000) | descriptor_l1;
//4 bytes aligned
ttb = ttb + offset;
for (i = 0; i < count; i++ )
{
//4 bytes aligned
*ttb++ = entry;
entry += OFFSET_1M;
}
}
/** \brief Create a 4k page entry
\param [in] ttb L1 table base address
\param [in] base_address 4k base address
\param [in] count Number of 4k pages to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
\param [in] ttb_l2 L2 table base address
\param [in] descriptor_l2 L2 descriptor (region attributes)
*/
__STATIC_INLINE void MMU_TTPage4k(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1, uint32_t *ttb_l2, uint32_t descriptor_l2 )
{
uint32_t offset, offset2;
uint32_t entry, entry2;
uint32_t i;
offset = base_address >> 20;
entry = ((int)ttb_l2 & 0xFFFFFC00) | descriptor_l1;
//4 bytes aligned
ttb += offset;
//create l1_entry
*ttb = entry;
offset2 = (base_address & 0xff000) >> 12;
ttb_l2 += offset2;
entry2 = (base_address & 0xFFFFF000) | descriptor_l2;
for (i = 0; i < count; i++ )
{
//4 bytes aligned
*ttb_l2++ = entry2;
entry2 += OFFSET_4K;
}
}
/** \brief Create a 64k page entry
\param [in] ttb L1 table base address
\param [in] base_address 64k base address
\param [in] count Number of 64k pages to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
\param [in] ttb_l2 L2 table base address
\param [in] descriptor_l2 L2 descriptor (region attributes)
*/
__STATIC_INLINE void MMU_TTPage64k(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1, uint32_t *ttb_l2, uint32_t descriptor_l2 )
{
uint32_t offset, offset2;
uint32_t entry, entry2;
uint32_t i,j;
offset = base_address >> 20;
entry = ((int)ttb_l2 & 0xFFFFFC00) | descriptor_l1;
//4 bytes aligned
ttb += offset;
//create l1_entry
*ttb = entry;
offset2 = (base_address & 0xff000) >> 12;
ttb_l2 += offset2;
entry2 = (base_address & 0xFFFF0000) | descriptor_l2;
for (i = 0; i < count; i++ )
{
//create 16 entries
for (j = 0; j < 16; j++)
{
//4 bytes aligned
*ttb_l2++ = entry2;
}
entry2 += OFFSET_64K;
}
}
/** \brief Enable MMU
Enable MMU
*/
__STATIC_INLINE void MMU_Enable(void) {
// Set M bit 0 to enable the MMU
// Set AFE bit to enable simplified access permissions model
// Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking
__set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29));
__ISB();
}
/** \brief Disable MMU
Disable MMU
*/
__STATIC_INLINE void MMU_Disable(void) {
// Clear M bit 0 to disable the MMU
__set_SCTLR( __get_SCTLR() & ~1);
__ISB();
}
/** \brief Invalidate entire unified TLB
TLBIALL. Invalidate entire unified TLB
*/
__STATIC_INLINE void MMU_InvalidateTLB(void) {
__set_TLBIALL(0);
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new state
}
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CA_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */