mbed-os/lwip-eth/arch/TARGET_Freescale/k64f_emac.c

644 lines
20 KiB
C

#include "lwip/opt.h"
#include "lwip/sys.h"
#include "lwip/def.h"
#include "lwip/mem.h"
#include "lwip/pbuf.h"
#include "lwip/stats.h"
#include "lwip/snmp.h"
#include "lwip/tcpip.h"
#include "netif/etharp.h"
#include "netif/ppp_oe.h"
#include "eth_arch.h"
#include "sys_arch.h"
#include "fsl_phy.h"
#include "k64f_emac_config.h"
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "mbed_interface.h"
enet_handle_t g_handle;
// TX Buffer descriptors
uint8_t *tx_desc_start_addr;
// RX Buffer descriptors
uint8_t *rx_desc_start_addr;
// RX packet buffer pointers
struct pbuf *rx_buff[ENET_RX_RING_LEN];
// TX packet buffer pointers
struct pbuf *tx_buff[ENET_RX_RING_LEN];
// RX packet payload pointers
uint32_t *rx_ptr[ENET_RX_RING_LEN];
/********************************************************************************
* Internal data
********************************************************************************/
#define ENET_BuffSizeAlign(n) ENET_ALIGN(n, ENET_BUFF_ALIGNMENT)
#define ENET_ALIGN(x,align) ((unsigned int)((x) + ((align)-1)) & (unsigned int)(~(unsigned int)((align)- 1)))
extern void k64f_init_eth_hardware(void);
/* K64F EMAC driver data structure */
struct k64f_enetdata {
struct netif *netif; /**< Reference back to LWIP parent netif */
sys_sem_t RxReadySem; /**< RX packet ready semaphore */
sys_sem_t TxCleanSem; /**< TX cleanup thread wakeup semaphore */
sys_mutex_t TXLockMutex; /**< TX critical section mutex */
sys_sem_t xTXDCountSem; /**< TX free buffer counting semaphore */
uint8_t tx_consume_index, tx_produce_index; /**< TX buffers ring */
};
static struct k64f_enetdata k64f_enetdata;
/** \brief Driver transmit and receive thread priorities
*
* Thread priorities for receive thread and TX cleanup thread. Alter
* to prioritize receive or transmit bandwidth. In a heavily loaded
* system or with LEIP_DEBUG enabled, the priorities might be better
* the same. */
#define RX_PRIORITY (osPriorityNormal)
#define TX_PRIORITY (osPriorityNormal)
#define PHY_PRIORITY (osPriorityNormal)
/********************************************************************************
* Buffer management
********************************************************************************/
/*
* This function will queue a new receive buffer
*/
static void update_read_buffer(uint8_t *buf)
{
if (buf != NULL) {
g_handle.rxBdCurrent->buffer = buf;
}
/* Clears status. */
g_handle.rxBdCurrent->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
/* Sets the receive buffer descriptor with the empty flag. */
g_handle.rxBdCurrent->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
/* Increases the buffer descriptor to the next one. */
if (g_handle.rxBdCurrent->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK) {
g_handle.rxBdCurrent = g_handle.rxBdBase;
g_handle.rxBdDirty = g_handle.rxBdBase;
} else {
g_handle.rxBdCurrent++;
g_handle.rxBdDirty++;
}
/* Actives the receive buffer descriptor. */
ENET->RDAR = ENET_RDAR_RDAR_MASK;
}
/** \brief Free TX buffers that are complete
*
* \param[in] k64f_enet Pointer to driver data structure
*/
static void k64f_tx_reclaim(struct k64f_enetdata *k64f_enet)
{
uint8_t i = 0 ;
/* Get exclusive access */
sys_mutex_lock(&k64f_enet->TXLockMutex);
i = k64f_enet->tx_consume_index;
// Traverse all descriptors, looking for the ones modified by the uDMA
while((i != k64f_enet->tx_produce_index) && (!(g_handle.txBdDirty->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK))) {
pbuf_free(tx_buff[i]);
if (g_handle.txBdDirty->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
g_handle.txBdDirty = g_handle.txBdBase;
else
g_handle.txBdDirty++;
i = (i + 1) % ENET_TX_RING_LEN;
}
k64f_enet->tx_consume_index = i;
/* Restore access */
sys_mutex_unlock(&k64f_enet->TXLockMutex);
}
/** \brief Ethernet receive interrupt handler
*
* This function handles the receive interrupt of K64F.
*/
void enet_mac_rx_isr()
{
sys_sem_signal(&k64f_enetdata.RxReadySem);
}
void enet_mac_tx_isr()
{
sys_sem_signal(&k64f_enetdata.TxCleanSem);
}
void ethernet_callback(ENET_Type *base, enet_handle_t *handle, enet_event_t event, void *param)
{
switch (event)
{
case kENET_RxEvent:
enet_mac_rx_isr();
break;
case kENET_TxEvent:
enet_mac_tx_isr();
break;
default:
break;
}
}
/** \brief Low level init of the MAC and PHY.
*
* \param[in] netif Pointer to LWIP netif structure
*/
static err_t low_level_init(struct netif *netif)
{
struct k64f_enetdata *k64f_enet = netif->state;
uint8_t i;
uint32_t sysClock;
phy_speed_t phy_speed;
phy_duplex_t phy_duplex;
uint32_t phyAddr = 0;
bool link = false;
enet_config_t config;
// Allocate RX descriptors
rx_desc_start_addr = (uint8_t *)calloc(1, sizeof(enet_rx_bd_struct_t) * ENET_RX_RING_LEN + ENET_BUFF_ALIGNMENT);
if(!rx_desc_start_addr)
return ERR_MEM;
// Allocate TX descriptors
tx_desc_start_addr = (uint8_t *)calloc(1, sizeof(enet_tx_bd_struct_t) * ENET_TX_RING_LEN + ENET_BUFF_ALIGNMENT);
if(!tx_desc_start_addr)
return ERR_MEM;
rx_desc_start_addr = (uint8_t *)ENET_ALIGN(rx_desc_start_addr, ENET_BUFF_ALIGNMENT);
tx_desc_start_addr = (uint8_t *)ENET_ALIGN(tx_desc_start_addr, ENET_BUFF_ALIGNMENT);
/* Create buffers for each receive BD */
for (i = 0; i < ENET_RX_RING_LEN; i++) {
rx_buff[i] = pbuf_alloc(PBUF_RAW, ENET_ETH_MAX_FLEN + ENET_BUFF_ALIGNMENT, PBUF_RAM);
if (NULL == rx_buff[i])
return ERR_MEM;
/* K64F note: the next line ensures that the RX buffer is properly aligned for the K64F
RX descriptors (16 bytes alignment). However, by doing so, we're effectively changing
a data structure which is internal to lwIP. This might not prove to be a good idea
in the long run, but a better fix would probably involve modifying lwIP itself */
rx_buff[i]->payload = (void*)ENET_ALIGN((uint32_t)rx_buff[i]->payload, ENET_BUFF_ALIGNMENT);
rx_ptr[i] = rx_buff[i]->payload;
}
k64f_enet->tx_consume_index = k64f_enet->tx_produce_index = 0;
/* prepare the buffer configuration. */
enet_buffer_config_t buffCfg = {
ENET_RX_RING_LEN,
ENET_TX_RING_LEN,
ENET_ALIGN(ENET_ETH_MAX_FLEN, ENET_BUFF_ALIGNMENT),
0,
(volatile enet_rx_bd_struct_t *)rx_desc_start_addr,
(volatile enet_tx_bd_struct_t *)tx_desc_start_addr,
(uint8_t *)&rx_ptr,
NULL,
};
k64f_init_eth_hardware();
sysClock = CLOCK_GetFreq(kCLOCK_CoreSysClk);
ENET_GetDefaultConfig(&config);
PHY_Init(ENET, 0, sysClock);
PHY_GetLinkStatus(ENET, phyAddr, &link);
if (link)
{
/* Get link information from PHY */
PHY_GetLinkSpeedDuplex(ENET, phyAddr, &phy_speed, &phy_duplex);
/* Change the MII speed and duplex for actual link status. */
config.miiSpeed = (enet_mii_speed_t)phy_speed;
config.miiDuplex = (enet_mii_duplex_t)phy_duplex;
config.interrupt = kENET_RxFrameInterrupt | kENET_TxFrameInterrupt;
}
config.rxMaxFrameLen = ENET_ETH_MAX_FLEN;
config.macSpecialConfig = kENET_ControlFlowControlEnable;
config.txAccelerConfig = kENET_TxAccelIsShift16Enabled;
config.rxAccelerConfig = kENET_RxAccelisShift16Enabled | kENET_RxAccelMacCheckEnabled;
ENET_Init(ENET, &g_handle, &config, &buffCfg, netif->hwaddr, sysClock);
ENET_SetCallback(&g_handle, ethernet_callback, netif);
ENET_ActiveRead(ENET);
return ERR_OK;
}
/**
* This function is the ethernet packet send function. It calls
* etharp_output after checking link status.
*
* \param[in] netif the lwip network interface structure for this enetif
* \param[in] q Pointer to pbug to send
* \param[in] ipaddr IP address
* \return ERR_OK or error code
*/
err_t k64f_etharp_output(struct netif *netif, struct pbuf *q, ip_addr_t *ipaddr)
{
/* Only send packet is link is up */
if (netif->flags & NETIF_FLAG_LINK_UP)
return etharp_output(netif, q, ipaddr);
return ERR_CONN;
}
/** \brief Allocates a pbuf and returns the data from the incoming packet.
*
* \param[in] netif the lwip network interface structure
* \param[in] idx index of packet to be read
* \return a pbuf filled with the received packet (including MAC header)
*/
static struct pbuf *k64f_low_level_input(struct netif *netif, int idx)
{
volatile enet_rx_bd_struct_t *bdPtr = g_handle.rxBdCurrent;
struct pbuf *p = NULL;
struct pbuf *temp_rxbuf = NULL;
u32_t length = 0;
const u16_t err_mask = ENET_BUFFDESCRIPTOR_RX_TRUNC_MASK | ENET_BUFFDESCRIPTOR_RX_CRC_MASK |
ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK | ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK;
#ifdef LOCK_RX_THREAD
/* Get exclusive access */
sys_mutex_lock(&k64f_enet->TXLockMutex);
#endif
/* Determine if a frame has been received */
if ((bdPtr->control & err_mask) != 0) {
#if LINK_STATS
if ((bdPtr->control & ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK) != 0)
LINK_STATS_INC(link.lenerr);
else
LINK_STATS_INC(link.chkerr);
#endif
LINK_STATS_INC(link.drop);
/* Re-use the same buffer in case of error */
update_read_buffer(NULL);
} else {
/* A packet is waiting, get length */
length = bdPtr->length;
/* Zero-copy */
p = rx_buff[idx];
p->len = length;
/* Attempt to queue new buffer */
temp_rxbuf = pbuf_alloc(PBUF_RAW, ENET_ETH_MAX_FLEN + ENET_BUFF_ALIGNMENT, PBUF_RAM);
if (NULL == temp_rxbuf) {
/* Drop frame (out of memory) */
LINK_STATS_INC(link.drop);
/* Re-queue the same buffer */
update_read_buffer(NULL);
LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
("k64f_low_level_input: Packet index %d dropped for OOM\n",
idx));
#ifdef LOCK_RX_THREAD
sys_mutex_unlock(&k64f_enet->TXLockMutex);
#endif
return NULL;
}
rx_buff[idx] = temp_rxbuf;
/* K64F note: the next line ensures that the RX buffer is properly aligned for the K64F
RX descriptors (16 bytes alignment). However, by doing so, we're effectively changing
a data structure which is internal to lwIP. This might not prove to be a good idea
in the long run, but a better fix would probably involve modifying lwIP itself */
rx_buff[idx]->payload = (void*)ENET_ALIGN((uint32_t)rx_buff[idx]->payload, ENET_BUFF_ALIGNMENT);
rx_ptr[idx] = rx_buff[idx]->payload;
update_read_buffer(rx_buff[idx]->payload);
LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
("k64f_low_level_input: Packet received: %p, size %d (index=%d)\n",
p, length, idx));
/* Save size */
p->tot_len = (u16_t) length;
LINK_STATS_INC(link.recv);
}
#ifdef LOCK_RX_THREAD
sys_mutex_unlock(&k64f_enet->TXLockMutex);
#endif
return p;
}
/** \brief Attempt to read a packet from the EMAC interface.
*
* \param[in] netif the lwip network interface structure
* \param[in] idx index of packet to be read
*/
void k64f_enetif_input(struct netif *netif, int idx)
{
struct eth_hdr *ethhdr;
struct pbuf *p;
/* move received packet into a new pbuf */
p = k64f_low_level_input(netif, idx);
if (p == NULL)
return;
/* points to packet payload, which starts with an Ethernet header */
ethhdr = (struct eth_hdr*)p->payload;
switch (htons(ethhdr->type)) {
case ETHTYPE_IP:
case ETHTYPE_ARP:
#if PPPOE_SUPPORT
case ETHTYPE_PPPOEDISC:
case ETHTYPE_PPPOE:
#endif /* PPPOE_SUPPORT */
/* full packet send to tcpip_thread to process */
if (netif->input(p, netif) != ERR_OK) {
LWIP_DEBUGF(NETIF_DEBUG, ("k64f_enetif_input: IP input error\n"));
/* Free buffer */
pbuf_free(p);
}
break;
default:
/* Return buffer */
pbuf_free(p);
break;
}
}
/** \brief Packet reception task
*
* This task is called when a packet is received. It will
* pass the packet to the LWIP core.
*
* \param[in] pvParameters pointer to the interface data
*/
static void packet_rx(void* pvParameters) {
struct k64f_enetdata *k64f_enet = pvParameters;
int idx = 0;
while (1) {
/* Wait for receive task to wakeup */
sys_arch_sem_wait(&k64f_enet->RxReadySem, 0);
while ((g_handle.rxBdCurrent->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK) == 0) {
k64f_enetif_input(k64f_enet->netif, idx);
idx = (idx + 1) % ENET_RX_RING_LEN;
}
}
}
/** \brief Transmit cleanup task
*
* This task is called when a transmit interrupt occurs and
* reclaims the pbuf and descriptor used for the packet once
* the packet has been transferred.
*
* \param[in] pvParameters pointer to the interface data
*/
static void packet_tx(void* pvParameters) {
struct k64f_enetdata *k64f_enet = pvParameters;
while (1) {
/* Wait for transmit cleanup task to wakeup */
sys_arch_sem_wait(&k64f_enet->TxCleanSem, 0);
k64f_tx_reclaim(k64f_enet);
}
}
/** \brief Low level output of a packet. Never call this from an
* interrupt context, as it may block until TX descriptors
* become available.
*
* \param[in] netif the lwip network interface structure for this netif
* \param[in] p the MAC packet to send (e.g. IP packet including MAC addresses and type)
* \return ERR_OK if the packet could be sent or an err_t value if the packet couldn't be sent
*/
static err_t k64f_low_level_output(struct netif *netif, struct pbuf *p)
{
struct k64f_enetdata *k64f_enet = netif->state;
struct pbuf *q;
struct pbuf *temp_pbuf;
uint8_t *psend = NULL, *dst;
temp_pbuf = pbuf_alloc(PBUF_RAW, p->tot_len + ENET_BUFF_ALIGNMENT, PBUF_RAM);
if (NULL == temp_pbuf)
return ERR_MEM;
/* K64F note: the next line ensures that the RX buffer is properly aligned for the K64F
RX descriptors (16 bytes alignment). However, by doing so, we're effectively changing
a data structure which is internal to lwIP. This might not prove to be a good idea
in the long run, but a better fix would probably involve modifying lwIP itself */
psend = (uint8_t *)ENET_ALIGN((uint32_t)temp_pbuf->payload, ENET_BUFF_ALIGNMENT);
for (q = p, dst = psend; q != NULL; q = q->next) {
MEMCPY(dst, q->payload, q->len);
dst += q->len;
}
/* Wait until a descriptor is available for the transfer. */
/* THIS WILL BLOCK UNTIL THERE ARE A DESCRIPTOR AVAILABLE */
while (g_handle.txBdCurrent->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
osSemaphoreWait(k64f_enet->xTXDCountSem.id, osWaitForever);
/* Get exclusive access */
sys_mutex_lock(&k64f_enet->TXLockMutex);
/* Save the buffer so that it can be freed when transmit is done */
tx_buff[k64f_enet->tx_produce_index] = temp_pbuf;
k64f_enet->tx_produce_index = (k64f_enet->tx_produce_index + 1) % ENET_TX_RING_LEN;
/* Setup transfers */
g_handle.txBdCurrent->buffer = psend;
g_handle.txBdCurrent->length = p->tot_len;
g_handle.txBdCurrent->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);
/* Increase the buffer descriptor address. */
if (g_handle.txBdCurrent->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
g_handle.txBdCurrent = g_handle.txBdBase;
else
g_handle.txBdCurrent++;
/* Active the transmit buffer descriptor. */
ENET->TDAR = ENET_TDAR_TDAR_MASK;
LINK_STATS_INC(link.xmit);
/* Restore access */
sys_mutex_unlock(&k64f_enet->TXLockMutex);
return ERR_OK;
}
/*******************************************************************************
* PHY task: monitor link
*******************************************************************************/
#define PHY_TASK_PERIOD_MS 200
#define STATE_UNKNOWN (-1)
typedef struct {
int connected;
phy_speed_t speed;
phy_duplex_t duplex;
} PHY_STATE;
int phy_link_status() {
bool connection_status;
uint32_t phyAddr = 0;
PHY_GetLinkStatus(ENET, phyAddr, &connection_status);
return (int)connection_status;
}
static void k64f_phy_task(void *data) {
struct netif *netif = (struct netif*)data;
bool connection_status;
PHY_STATE crt_state = {STATE_UNKNOWN, (phy_speed_t)STATE_UNKNOWN, (phy_duplex_t)STATE_UNKNOWN};
PHY_STATE prev_state;
uint32_t phyAddr = 0;
uint32_t rcr = 0;
prev_state = crt_state;
while (true) {
// Get current status
PHY_GetLinkStatus(ENET, phyAddr, &connection_status);
crt_state.connected = connection_status ? 1 : 0;
// Get the actual PHY link speed
PHY_GetLinkSpeedDuplex(ENET, phyAddr, &crt_state.speed, &crt_state.duplex);
// Compare with previous state
if (crt_state.connected != prev_state.connected) {
if (crt_state.connected)
tcpip_callback_with_block((tcpip_callback_fn)netif_set_link_up, (void*) netif, 1);
else
tcpip_callback_with_block((tcpip_callback_fn)netif_set_link_down, (void*) netif, 1);
}
if (crt_state.speed != prev_state.speed) {
rcr = ENET->RCR;
rcr &= ~ENET_RCR_RMII_10T_MASK;
rcr |= ENET_RCR_RMII_10T(!crt_state.speed);
ENET->RCR = rcr;
}
prev_state = crt_state;
osDelay(PHY_TASK_PERIOD_MS);
}
}
/**
* Should be called at the beginning of the program to set up the
* network interface.
*
* This function should be passed as a parameter to netif_add().
*
* @param[in] netif the lwip network interface structure for this netif
* @return ERR_OK if the loopif is initialized
* ERR_MEM if private data couldn't be allocated
* any other err_t on error
*/
err_t eth_arch_enetif_init(struct netif *netif)
{
err_t err;
LWIP_ASSERT("netif != NULL", (netif != NULL));
k64f_enetdata.netif = netif;
/* set MAC hardware address */
#if (MBED_MAC_ADDRESS_SUM != MBED_MAC_ADDR_INTERFACE)
netif->hwaddr[0] = MBED_MAC_ADDR_0;
netif->hwaddr[1] = MBED_MAC_ADDR_1;
netif->hwaddr[2] = MBED_MAC_ADDR_2;
netif->hwaddr[3] = MBED_MAC_ADDR_3;
netif->hwaddr[4] = MBED_MAC_ADDR_4;
netif->hwaddr[5] = MBED_MAC_ADDR_5;
#else
mbed_mac_address((char *)netif->hwaddr);
#endif
netif->hwaddr_len = ETHARP_HWADDR_LEN;
/* maximum transfer unit */
netif->mtu = 1500;
/* device capabilities */
// TODOETH: check if the flags are correct below
netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET | NETIF_FLAG_IGMP;
/* Initialize the hardware */
netif->state = &k64f_enetdata;
err = low_level_init(netif);
if (err != ERR_OK)
return err;
#if LWIP_NETIF_HOSTNAME
/* Initialize interface hostname */
netif->hostname = "lwipk64f";
#endif /* LWIP_NETIF_HOSTNAME */
netif->name[0] = 'e';
netif->name[1] = 'n';
netif->output = k64f_etharp_output;
netif->linkoutput = k64f_low_level_output;
/* CMSIS-RTOS, start tasks */
#ifdef CMSIS_OS_RTX
memset(k64f_enetdata.xTXDCountSem.data, 0, sizeof(k64f_enetdata.xTXDCountSem.data));
k64f_enetdata.xTXDCountSem.def.semaphore = k64f_enetdata.xTXDCountSem.data;
#endif
k64f_enetdata.xTXDCountSem.id = osSemaphoreCreate(&k64f_enetdata.xTXDCountSem.def, ENET_TX_RING_LEN);
LWIP_ASSERT("xTXDCountSem creation error", (k64f_enetdata.xTXDCountSem.id != NULL));
err = sys_mutex_new(&k64f_enetdata.TXLockMutex);
LWIP_ASSERT("TXLockMutex creation error", (err == ERR_OK));
/* Packet receive task */
err = sys_sem_new(&k64f_enetdata.RxReadySem, 0);
LWIP_ASSERT("RxReadySem creation error", (err == ERR_OK));
sys_thread_new("receive_thread", packet_rx, netif->state, DEFAULT_THREAD_STACKSIZE, RX_PRIORITY);
/* Transmit cleanup task */
err = sys_sem_new(&k64f_enetdata.TxCleanSem, 0);
LWIP_ASSERT("TxCleanSem creation error", (err == ERR_OK));
sys_thread_new("txclean_thread", packet_tx, netif->state, DEFAULT_THREAD_STACKSIZE, TX_PRIORITY);
/* PHY monitoring task */
sys_thread_new("phy_thread", k64f_phy_task, netif, DEFAULT_THREAD_STACKSIZE, PHY_PRIORITY);
/* Allow the PHY task to detect the initial link state and set up the proper flags */
osDelay(10);
return ERR_OK;
}
void eth_arch_enable_interrupts(void) {
//NVIC_SetPriority(ENET_Receive_IRQn, 6U);
//NVIC_SetPriority(ENET_Transmit_IRQn, 6U);
}
void eth_arch_disable_interrupts(void) {
}
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */