mbed-os/drivers/MbedCRC.h

885 lines
30 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_CRC_API_H
#define MBED_CRC_API_H
#include "cmsis.h"
#include "hal/crc_api.h"
#ifdef DEVICE_CRC
#include "device.h"
#endif
#include "platform/mbed_assert.h"
#ifdef __cplusplus
#include "platform/SingletonPtr.h"
#include "platform/PlatformMutex.h"
#ifdef UNITTEST
#include <type_traits>
#define MSTD_CONSTEXPR_IF_HAS_IS_CONSTANT_EVALUATED
#else
#include <mstd_type_traits>
#endif
namespace mbed {
/** \addtogroup drivers-public-api */
/** @{*/
/**
* \defgroup drivers_MbedCRC MbedCRC class
* @{
*/
extern SingletonPtr<PlatformMutex> mbed_crc_mutex;
/** CRC mode selection
*/
enum class CrcMode {
HARDWARE, /// Use hardware (if available), else table-based computation
TABLE, /// Use table-based computation (if table available), else bitwise
BITWISE /// Always use bitwise manual computation
};
#ifndef DOXYGEN_ONLY
namespace impl {
template<uint32_t polynomial, uint8_t width, CrcMode mode>
class MbedCRC;
constexpr bool have_crc_table(uint32_t polynomial, uint8_t width)
{
#if MBED_CRC_TABLE_SIZE > 0
return (polynomial == POLY_32BIT_ANSI && width == 32) ||
(polynomial == POLY_16BIT_IBM && width == 16) ||
(polynomial == POLY_16BIT_CCITT && width == 16) ||
(polynomial == POLY_8BIT_CCITT && width == 8) ||
(polynomial == POLY_7BIT_SD && width == 7);
#else
return false;
#endif
}
constexpr CrcMode choose_crc_mode(uint32_t polynomial, uint8_t width, CrcMode mode_limit)
{
return
#if DEVICE_CRC
mode_limit == CrcMode::HARDWARE && HAL_CRC_IS_SUPPORTED(polynomial, width) ? CrcMode::HARDWARE :
#endif
mode_limit <= CrcMode::TABLE && have_crc_table(polynomial, width) ? CrcMode::TABLE :
CrcMode::BITWISE;
}
#endif // DOXYGEN_ONLY
} // namespace impl
/** CRC object provides CRC generation through hardware or software
*
* CRC sums can be generated using three different methods: hardware, software ROM tables
* and bitwise computation. The mode used is normally selected automatically based on required
* polynomial and hardware capabilities. Any polynomial in standard form (`x^3 + x + 1`)
* can be used for computation, but custom ones can affect the performance.
*
* First choice is the hardware mode. The supported polynomials are hardware specific, and
* you need to consult your MCU manual to discover them. Next, ROM polynomial tables
* are tried (you can find list of supported polynomials here ::crc_polynomial). If the selected
* configuration is supported, it will accelerate the software computations. If ROM tables
* are not available for the selected polynomial, then CRC is computed at run time bit by bit
* for all data input.
*
* If desired, the mode can be manually limited for a given instance by specifying the mode_limit
* template parameter. This might be appropriate to ensure a table is not pulled in for a
* non-speed-critical CRC, or to avoid the hardware set-up overhead if you know you will be
* calling `compute` with very small data sizes.
*
* @note Synchronization level: Thread safe
*
* @tparam polynomial CRC polynomial value in hex
* @tparam width CRC polynomial width
* @tparam mode_limit Maximum amount of acceleration to use
*
* Example: Compute CRC data
* @code
*
* #include "mbed.h"
*
* int main() {
* MbedCRC<POLY_32BIT_ANSI, 32> ct;
*
* char test[] = "123456789";
* uint32_t crc = 0;
*
* printf("\nPolynomial = 0x%lx Width = %d \n", ct.get_polynomial(), ct.get_width());
*
* ct.compute((void *)test, strlen((const char*)test), &crc);
*
* printf("The CRC of data \"123456789\" is : 0x%lx\n", crc);
* return 0;
* }
* @endcode
* Example: Compute CRC with data available in parts
* @code
*
* #include "mbed.h"
* int main() {
* MbedCRC<POLY_32BIT_ANSI, 32> ct;
*
* char test[] = "123456789";
* uint32_t crc = 0;
*
* printf("\nPolynomial = 0x%lx Width = %d \n", ct.get_polynomial(), ct.get_width());
* ct.compute_partial_start(&crc);
* ct.compute_partial((void *)&test, 4, &crc);
* ct.compute_partial((void *)&test[4], 5, &crc);
* ct.compute_partial_stop(&crc);
* printf("The CRC of data \"123456789\" is : 0x%lx\n", crc);
* return 0;
* }
* @endcode
*/
template <uint32_t polynomial = POLY_32BIT_ANSI, uint8_t width = 32, CrcMode mode_limit = CrcMode::HARDWARE>
class MbedCRC {
impl::MbedCRC<polynomial, width, impl::choose_crc_mode(polynomial, width, mode_limit)> crc_impl;
public:
/* Backwards compatibility */
enum CrcMode {
#if DEVICE_CRC
HARDWARE = int(::mbed::CrcMode::HARDWARE),
#endif
TABLE = int(::mbed::CrcMode::TABLE),
BITWISE = int(::mbed::CrcMode::BITWISE)
};
typedef size_t crc_data_size_t;
/** Lifetime of CRC object
*
* @param initial_xor Initial value/seed to Xor
* @param final_xor Final Xor value
* @param reflect_data
* @param reflect_remainder
* @note Default constructor without any arguments is valid only for supported CRC polynomials. :: crc_polynomial_t
* MbedCRC <POLY_7BIT_SD, 7> ct; --- Valid POLY_7BIT_SD
* MbedCRC <0x1021, 16> ct; --- Valid POLY_16BIT_CCITT
* MbedCRC <POLY_16BIT_CCITT, 32> ct; --- Invalid, compilation error
* MbedCRC <POLY_16BIT_CCITT, 32> ct (i,f,rd,rr) Constructor can be used for not supported polynomials
* MbedCRC<POLY_16BIT_CCITT, 16> sd(0, 0, false, false); Constructor can also be used for supported
* polynomials with different initial/final/reflect values
*
*/
constexpr
MbedCRC(uint32_t initial_xor, uint32_t final_xor, bool reflect_data, bool reflect_remainder) :
crc_impl(initial_xor, final_xor, reflect_data, reflect_remainder)
{
}
/* Default values for different types of polynomials
*/
// *INDENT-OFF*
template<uint32_t poly = polynomial, std::enable_if_t<poly == POLY_32BIT_ANSI && width == 32, int> = 0>
constexpr MbedCRC() : MbedCRC(0xFFFFFFFF, 0xFFFFFFFF, true, true)
{
}
template<uint32_t poly = polynomial, std::enable_if_t<poly == POLY_16BIT_IBM && width == 16, int> = 0>
constexpr MbedCRC() : MbedCRC(0, 0, true, true)
{
}
template<uint32_t poly = polynomial, std::enable_if_t<poly == POLY_16BIT_CCITT && width == 16, int> = 0>
constexpr MbedCRC() : MbedCRC(0xFFFF, 0, false, false)
{
}
template<uint32_t poly = polynomial, std::enable_if_t<poly == POLY_7BIT_SD && width == 7, int> = 0>
constexpr MbedCRC() : MbedCRC(0, 0, false, false)
{
}
template<uint32_t poly = polynomial, std::enable_if_t<poly == POLY_8BIT_CCITT && width == 8, int> = 0>
constexpr MbedCRC() : MbedCRC(0, 0, false, false)
{
}
// *INDENT-ON*
/** Compute CRC for the data input
* Compute CRC performs the initialization, computation and collection of
* final CRC.
*
* @param buffer Data bytes
* @param size Size of data
* @param crc CRC is the output value
* @return 0 on success, negative error code on failure
*/
int32_t compute(const void *buffer, crc_data_size_t size, uint32_t *crc)
{
return crc_impl.compute(buffer, size, crc);
}
/** Compute partial CRC for the data input.
*
* CRC data if not available fully, CRC can be computed in parts with available data.
*
* In case of hardware, intermediate values and states are saved by hardware. Mutex
* locking is used to serialize access to hardware CRC.
*
* In case of software CRC, previous CRC output should be passed as argument to the
* current compute_partial call. Please note the intermediate CRC value is maintained by
* application and not the driver.
*
* @pre: Call `compute_partial_start` to start the partial CRC calculation.
* @post: Call `compute_partial_stop` to get the final CRC value.
*
* @param buffer Data bytes
* @param size Size of data
* @param crc CRC value is intermediate CRC value filled by API.
* @return 0 on success or a negative error code on failure
* @note: CRC as output in compute_partial is not final CRC value, call `compute_partial_stop`
* to get final correct CRC value.
*/
int32_t compute_partial(const void *buffer, crc_data_size_t size, uint32_t *crc)
{
return crc_impl.compute_partial(buffer, size, crc);
}
/** Compute partial start, indicate start of partial computation.
*
* This API should be called before performing any partial computation
* with compute_partial API.
*
* @param crc Initial CRC value set by the API
* @return 0 on success or a negative in case of failure
* @note: CRC is an out parameter and must be reused with compute_partial
* and `compute_partial_stop` without any modifications in application.
*/
int32_t compute_partial_start(uint32_t *crc)
{
return crc_impl.compute_partial_start(crc);
}
/** Get the final CRC value of partial computation.
*
* CRC value available in partial computation is not correct CRC, as some
* algorithms require remainder to be reflected and final value to be XORed
* This API is used to perform final computation to get correct CRC value.
*
* @param crc CRC result
* @return 0 on success or a negative in case of failure.
*/
int32_t compute_partial_stop(uint32_t *crc)
{
return crc_impl.compute_partial_stop(crc);
}
/** Get the current CRC polynomial.
*
* @return Polynomial value
*/
static constexpr uint32_t get_polynomial()
{
return polynomial;
}
/** Get the current CRC width
*
* @return CRC width
*/
static constexpr uint8_t get_width()
{
return width;
}
};
#if !defined(DOXYGEN_ONLY)
/* Internal implementation - basically same as public, but actual mode locked in */
namespace impl {
template <uint32_t polynomial, uint8_t width, CrcMode mode>
class MbedCRC {
public:
typedef size_t crc_data_size_t;
constexpr
MbedCRC(uint32_t initial_xor, uint32_t final_xor, bool reflect_data, bool reflect_remainder) :
_initial_value(adjust_initial_value(initial_xor, reflect_data)),
_final_xor(final_xor),
_reflect_data(reflect_data),
_reflect_remainder(reflect_remainder)
{
static_assert(width <= 32, "Max 32-bit CRC supported");
}
/** Compute CRC for the data input
* Compute CRC performs the initialization, computation and collection of
* final CRC.
*
* @param buffer Data bytes
* @param size Size of data
* @param crc CRC is the output value
* @return 0 on success, negative error code on failure
*/
int32_t compute(const void *buffer, crc_data_size_t size, uint32_t *crc)
{
int32_t status;
status = compute_partial_start(crc);
if (0 != status) {
return status;
}
status = compute_partial(buffer, size, crc);
if (0 != status) {
return status;
}
status = compute_partial_stop(crc);
return status;
}
/** Compute partial CRC for the data input.
*
* CRC data if not available fully, CRC can be computed in parts with available data.
*
* In case of hardware, intermediate values and states are saved by hardware. Mutex
* locking is used to serialize access to hardware CRC.
*
* In case of software CRC, previous CRC output should be passed as argument to the
* current compute_partial call. Please note the intermediate CRC value is maintained by
* application and not the driver.
*
* @pre: Call `compute_partial_start` to start the partial CRC calculation.
* @post: Call `compute_partial_stop` to get the final CRC value.
*
* @param buffer Data bytes
* @param size Size of data
* @param crc CRC value is intermediate CRC value filled by API.
* @return 0 on success or a negative error code on failure
* @note: CRC as output in compute_partial is not final CRC value, call `compute_partial_stop`
* to get final correct CRC value.
*/
int32_t compute_partial(const void *buffer, crc_data_size_t size, uint32_t *crc)
{
const uint8_t *data = static_cast<const uint8_t *>(buffer);
return do_compute_partial(data, size, crc);
}
/** Compute partial start, indicate start of partial computation.
*
* This API should be called before performing any partial computation
* with compute_partial API.
*
* @param crc Initial CRC value set by the API
* @return 0 on success or a negative in case of failure
* @note: CRC is an out parameter and must be reused with compute_partial
* and `compute_partial_stop` without any modifications in application.
*/
int32_t compute_partial_start(uint32_t *crc)
{
#if DEVICE_CRC
if (mode == CrcMode::HARDWARE) {
lock();
crc_mbed_config_t config;
config.polynomial = polynomial;
config.width = width;
config.initial_xor = _initial_value;
config.final_xor = _final_xor;
config.reflect_in = _reflect_data;
config.reflect_out = _reflect_remainder;
hal_crc_compute_partial_start(&config);
}
#endif
*crc = _initial_value;
return 0;
}
/** Get the final CRC value of partial computation.
*
* CRC value available in partial computation is not correct CRC, as some
* algorithms require remainder to be reflected and final value to be XORed
* This API is used to perform final computation to get correct CRC value.
*
* @param crc CRC result
* @return 0 on success or a negative in case of failure.
*/
int32_t compute_partial_stop(uint32_t *crc)
{
#if DEVICE_CRC
if (mode == CrcMode::HARDWARE) {
*crc = hal_crc_get_result();
unlock();
return 0;
}
#endif
uint_fast32_t p_crc = *crc;
if (mode == CrcMode::BITWISE) {
if (_reflect_data) {
/* CRC has MSB in bottom bit of register */
if (!_reflect_remainder) {
p_crc = reflect_crc(p_crc);
}
} else {
/* CRC has MSB in top bit of register */
p_crc = _reflect_remainder ? reflect(p_crc) : shift_right(p_crc);
}
} else { // TABLE
/* CRC has MSB in bottom bit of register */
if (!_reflect_remainder) {
p_crc = reflect_crc(p_crc);
}
}
p_crc ^= _final_xor;
p_crc &= get_crc_mask();
*crc = p_crc;
return 0;
}
private:
/** Guaranteed constexpr reflection (all toolchains)
*
* @note This should never be run-time evaluated - very inefficient
* @param Register value to be reflected (full 32-bit value)
* @return Reflected value (full 32-bit value)
*/
static constexpr uint32_t reflect_constant(uint32_t data)
{
/* Doing this hard way to keep it C++11 constexpr and hence ARM C 5 compatible */
return ((data & 0x00000001) << 31) |
((data & 0x00000002) << 29) |
((data & 0x00000004) << 27) |
((data & 0x00000008) << 25) |
((data & 0x00000010) << 23) |
((data & 0x00000020) << 21) |
((data & 0x00000040) << 19) |
((data & 0x00000080) << 17) |
((data & 0x00000100) << 15) |
((data & 0x00000200) << 13) |
((data & 0x00000400) << 11) |
((data & 0x00000800) << 9) |
((data & 0x00001000) << 7) |
((data & 0x00002000) << 5) |
((data & 0x00004000) << 3) |
((data & 0x00008000) << 1) |
((data & 0x00010000) >> 1) |
((data & 0x00020000) >> 3) |
((data & 0x00040000) >> 5) |
((data & 0x00080000) >> 7) |
((data & 0x00100000) >> 9) |
((data & 0x00200000) >> 11) |
((data & 0x00400000) >> 13) |
((data & 0x00800000) >> 15) |
((data & 0x01000000) >> 17) |
((data & 0x02000000) >> 19) |
((data & 0x04000000) >> 21) |
((data & 0x08000000) >> 23) |
((data & 0x10000000) >> 25) |
((data & 0x20000000) >> 27) |
((data & 0x40000000) >> 29) |
((data & 0x80000000) >> 31);
}
/** General reflection
*
* @note This is used when we may need to perform run-time computation, so
* we need the possibility to produce the optimal run-time RBIT instruction. But
* if the compiler doesn't treat RBIT as a built-in, it's useful to have a C fallback
* for the constant case, avoiding runtime RBIT(0) computations. This is an
* optimization only available for some toolchains; others will always use runtime
* RBIT. If we require a constant expression, use reflect_constant instead.
*
* @param Register value to be reflected (full 32-bit value)
* @return Reflected value (full 32-bit value)
*/
#ifdef MSTD_HAS_IS_CONSTANT_EVALUATED
static constexpr uint32_t reflect(uint32_t data)
{
return mstd::is_constant_evaluated() ? reflect_constant(data) : __RBIT(data);
}
#else
static uint32_t reflect(uint32_t data)
{
return __RBIT(data);
}
#endif
/** Data bytes may need to be reflected.
*
* @param data value to be reflected (bottom 8 bits)
* @return Reflected value (bottom 8 bits)
*/
static MSTD_CONSTEXPR_IF_HAS_IS_CONSTANT_EVALUATED
uint_fast32_t reflect_byte(uint_fast32_t data)
{
return reflect(data) >> 24;
}
/** Get the current CRC polynomial, reflected at bottom of register.
*
* @return Reflected polynomial value (so x^width term would be at bit -1)
*/
static constexpr uint32_t get_reflected_polynomial()
{
return shift_right(reflect_constant(polynomial));
}
/** Get the current CRC polynomial, at top of register.
*
* @return Shifted polynomial value (so x^width term would be at bit 32)
*/
static constexpr uint32_t get_top_polynomial()
{
return shift_left(polynomial);
}
const uint32_t _initial_value;
const uint32_t _final_xor;
const bool _reflect_data;
const bool _reflect_remainder;
// *INDENT-OFF*
using crc_table_t = std::conditional_t<width <= 8, uint8_t,
std::conditional_t<width <= 16, uint16_t,
uint32_t
>>;
// *INDENT-ON*
#if MBED_CRC_TABLE_SIZE > 0
/* Tables only actually defined for mode == TABLE, and certain polynomials - see below */
static const crc_table_t _crc_table[MBED_CRC_TABLE_SIZE];
#endif
static constexpr uint32_t adjust_initial_value(uint32_t initial_xor, bool reflect_data)
{
if (mode == CrcMode::BITWISE) {
/* For bitwise calculation, CRC register is reflected if data is, to match input.
* (MSB at bottom of register). If not reflected, it is at the top of the register
* (MSB at top of register).
*/
return reflect_data ? reflect_crc(initial_xor) : shift_left(initial_xor);
} else if (mode == CrcMode::TABLE) {
/* For table calculation, CRC value is reflected, to match tables.
* (MSB at bottom of register). */
return reflect_crc(initial_xor);
} else { // CrcMode::HARDWARE
return initial_xor;
}
}
/** Acquire exclusive access to CRC hardware/software.
*/
static void lock()
{
#if DEVICE_CRC
if (mode == CrcMode::HARDWARE) {
mbed_crc_mutex->lock();
}
#endif
}
/** Release exclusive access to CRC hardware/software.
*/
static void unlock()
{
#if DEVICE_CRC
if (mode == CrcMode::HARDWARE) {
mbed_crc_mutex->unlock();
}
#endif
}
/** Get the CRC data mask.
*
* @return CRC data mask is generated based on current CRC width
*/
static constexpr uint32_t get_crc_mask()
{
return (uint32_t)((uint32_t)2U << (width - 1)) - 1U;
}
/** CRC values may need to be reflected.
*
* @param CRC value to be reflected (width bits at bottom of 32-bit word)
* @return Reflected value (still at bottom of 32-bit word)
*/
static MSTD_CONSTEXPR_IF_HAS_IS_CONSTANT_EVALUATED
uint32_t reflect_crc(uint32_t data)
{
return reflect(data) >> (32 - width);
}
/** Register values may need to be shifted left.
*
* @param Register value to be shifted up (in bottom width bits)
* @return Shifted value (in top width bits)
*/
static constexpr uint32_t shift_left(uint32_t data)
{
return data << (32 - width);
}
/** Register values may need to be shifted right.
*
* @param Register value to be shifted right (in top width bits)
* @return Shifted value (in bottom width bits)
*/
static constexpr uint32_t shift_right(uint32_t data)
{
return data >> (32 - width);
}
/* Check to see if we can do assembler optimizations */
#if (defined __GNUC__ || defined __clang__) && \
(defined __arm__ || defined __ARM_ARCH)
#if (__ARM_ARCH_7M__ == 1U) || \
(__ARM_ARCH_7EM__ == 1U) || \
(__ARM_ARCH_8M_MAIN__ == 1U) || \
(__ARM_ARCH_7A__ == 1U)
/* ARM that has Thumb-2 - same unified assembly is good for either ARM or Thumb state (LSRS; IT CS; EORCS reg/imm) */
#define MBED_CRC_ARM_THUMB2 1
#define MBED_CRC_THUMB1 0
#elif (__ARM_ARCH_6M__ == 1U) || \
(__ARM_ARCH_8M_BASE__ == 1U)
/* Thumb-1-only ARM-M device - use Thumb-1 compatible assembly with branch (LSRS; BCC; EORS reg) */
#define MBED_CRC_ARM_THUMB2 0
#define MBED_CRC_THUMB1 1
#else // __ARM_ARCH_xxx
#error "Unknown ARM architecture for CRC optimization"
#endif // __ARM_ARCH_xxx
#else // __arm__ || defined __ICC_ARM__ || defined __ARM_ARCH
/* Seem to be compiling for non-ARM, or an unsupported toolchain, so stick with C implementations */
#define MBED_CRC_ARM_THUMB2 0
#define MBED_CRC_THUMB1 0
#endif
// *INDENT-OFF*
/** Process 1 bit of non-reflected CRC
*
* Shift the p_crc register left 1 bit - if a one is shifted
* out, exclusive-or with the polynomial mask.
*
* Assembler optimizations can be applied here, to make
* use of the CPU's carry output from shifts.
*
* @param p_crc input register value
* @return updated register value
*/
static uint_fast32_t do_1_bit_normal(uint_fast32_t p_crc)
{
#if MBED_CRC_ARM_THUMB2
__asm(".syntax unified\n\t"
"LSLS" "\t%[p_crc], %[p_crc], #1\n\t"
"IT" "\tCS\n\t"
"EORCS" "\t%[p_crc], %[poly]"
: [p_crc] "+&r" (p_crc)
: [poly] "rI" (get_top_polynomial())
: "cc");
#elif MBED_CRC_THUMB1
__asm(".syntax unified\n\t"
"LSLS" "\t%[p_crc], %[p_crc], #1\n\t"
"BCC" "\t%=f\n\t"
"EORS" "\t%[p_crc], %[poly]\n"
"%=:"
: [p_crc] "+&l" (p_crc)
: [poly] "l" (get_top_polynomial())
: "cc");
#else
if (p_crc & 0x80000000) {
p_crc = (p_crc << 1) ^ get_top_polynomial();
} else {
p_crc = (p_crc << 1);
}
#endif
return p_crc;
}
/** Process 1 bit of reflected CRC
*
* Shift the p_crc register right 1 bit - if a one is shifted
* out, exclusive-or with the polynomial mask.
*
* Assembler optimizations can be applied here, to make
* use of the CPU's carry output from shifts.
*
* @param p_crc input register value
* @return updated register value
*/
static uint_fast32_t do_1_bit_reflected(uint_fast32_t p_crc)
{
#if MBED_CRC_ARM_THUMB2
__asm(".syntax unified\n\t"
"LSRS" "\t%[p_crc], %[p_crc], #1\n\t"
"IT" "\tCS\n\t"
"EORCS" "\t%[p_crc], %[poly]"
: [p_crc] "+&r" (p_crc)
: [poly] "rI" (get_reflected_polynomial())
: "cc");
#elif MBED_CRC_THUMB1
__asm(".syntax unified\n\t"
"LSRS" "\t%[p_crc], %[p_crc], #1\n\t"
"BCC" "\t%=f\n\t"
"EORS" "\t%[p_crc], %[poly]\n"
"%=:"
: [p_crc] "+&l" (p_crc)
: [poly] "l" (get_reflected_polynomial())
: "cc");
#else
if (p_crc & 1) {
p_crc = (p_crc >> 1) ^ get_reflected_polynomial();
} else {
p_crc = (p_crc >> 1);
}
#endif
return p_crc;
}
// *INDENT-ON*
/** Bitwise CRC computation.
*
* @param buffer data buffer
* @param size size of the data
* @param crc CRC value is filled in, but the value is not the final
* @return 0 on success or a negative error code on failure
*/
template<CrcMode mode_ = mode>
std::enable_if_t<mode_ == CrcMode::BITWISE, int32_t>
do_compute_partial(const uint8_t *data, crc_data_size_t size, uint32_t *crc) const
{
uint_fast32_t p_crc = *crc;
if (_reflect_data) {
/* Everything is reflected to match data - MSB of polynomial at bottom of 32-bit register */
for (crc_data_size_t byte = 0; byte < size; byte++) {
p_crc ^= data[byte];
// Perform modulo-2 division, a bit at a time
for (unsigned int bit = 8; bit > 0; --bit) {
p_crc = do_1_bit_reflected(p_crc);
}
}
} else {
/* Polynomial is shifted to put MSB of polynomial at top of 32-bit register */
for (crc_data_size_t byte = 0; byte < size; byte++) {
p_crc ^= (uint_fast32_t) data[byte] << 24;
// Perform modulo-2 division, a bit at a time
for (unsigned int bit = 8; bit > 0; --bit) {
p_crc = do_1_bit_normal(p_crc);
}
}
}
*crc = p_crc;
return 0;
}
#if MBED_CRC_TABLE_SIZE > 0
/** CRC computation using ROM tables.
*
* @param buffer data buffer
* @param size size of the data
* @param crc CRC value is filled in, but the value is not the final
* @return 0 on success or a negative error code on failure
*/
template<CrcMode mode_ = mode>
std::enable_if_t<mode_ == CrcMode::TABLE, int32_t>
do_compute_partial(const uint8_t *data, crc_data_size_t size, uint32_t *crc) const
{
uint_fast32_t p_crc = *crc;
// GCC has been observed to not hoist the load of _reflect_data out of the loop
// Note the inversion because table and CRC are reflected - data must be
bool reflect = !_reflect_data;
for (crc_data_size_t byte = 0; byte < size; byte++) {
uint_fast32_t data_byte = data[byte];
if (reflect) {
data_byte = reflect_byte(data_byte);
}
#if MBED_CRC_TABLE_SIZE == 16
p_crc = _crc_table[(data_byte ^ p_crc) & 0xF] ^ (p_crc >> 4);
data_byte >>= 4;
p_crc = _crc_table[(data_byte ^ p_crc) & 0xF] ^ (p_crc >> 4);
#else
p_crc = _crc_table[(data_byte ^ p_crc) & 0xFF] ^ (p_crc >> 8);
#endif
}
*crc = p_crc;
return 0;
}
#endif
#ifdef DEVICE_CRC
/** Hardware CRC computation.
*
* @param buffer data buffer
* @param size size of the data
* @return 0 on success or a negative error code on failure
*/
template<CrcMode mode_ = mode>
std::enable_if_t<mode_ == CrcMode::HARDWARE, int32_t>
do_compute_partial(const uint8_t *data, crc_data_size_t size, uint32_t *) const
{
hal_crc_compute_partial(data, size);
return 0;
}
#endif
};
#if MBED_CRC_TABLE_SIZE > 0
/* Declarations of the tables we provide. (Not strictly needed, but compilers
* can warn if they see us using the template without a generic definition, so
* let it know we have provided these specialisations.)
*/
template<>
const uint8_t MbedCRC<POLY_7BIT_SD, 7, CrcMode::TABLE>::_crc_table[MBED_CRC_TABLE_SIZE];
template<>
const uint8_t MbedCRC<POLY_8BIT_CCITT, 8, CrcMode::TABLE>::_crc_table[MBED_CRC_TABLE_SIZE];
template<>
const uint16_t MbedCRC<POLY_16BIT_CCITT, 16, CrcMode::TABLE>::_crc_table[MBED_CRC_TABLE_SIZE];
template<>
const uint16_t MbedCRC<POLY_16BIT_IBM, 16, CrcMode::TABLE>::_crc_table[MBED_CRC_TABLE_SIZE];
template<>
const uint32_t MbedCRC<POLY_32BIT_ANSI, 32, CrcMode::TABLE>::_crc_table[MBED_CRC_TABLE_SIZE];
#endif // MBED_CRC_TABLE_SIZE > 0
} // namespace impl
#endif // !defined(DOXYGEN_ONLY)
/** @}*/
/** @}*/
} // namespace mbed
#endif // __cplusplus
/* Internal helper for mbed_error.c crash recovery */
#ifdef __cplusplus
extern "C"
#endif
uint32_t mbed_tiny_compute_crc32(const void *data, int datalen);
#endif