mbed-os/components/storage/blockdevice/COMPONENT_SD/SDBlockDevice.cpp

1157 lines
37 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Introduction
* ------------
* SD and MMC cards support a number of interfaces, but common to them all
* is one based on SPI. Since we already have the mbed SPI Interface, it will
* be used for SD cards.
*
* The main reference I'm using is Chapter 7, "SPI Mode" of:
* http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
*
* SPI Startup
* -----------
* The SD card powers up in SD mode. The start-up procedure is complicated
* by the requirement to support older SDCards in a backwards compatible
* way with the new higher capacity variants SDHC and SDHC.
*
* The following figures from the specification with associated text describe
* the SPI mode initialisation process:
* - Figure 7-1: SD Memory Card State Diagram (SPI mode)
* - Figure 7-2: SPI Mode Initialization Flow
*
* Firstly, a low initial clock should be selected (in the range of 100-
* 400kHZ). After initialisation has been completed, the switch to a
* higher clock speed can be made (e.g. 1MHz). Newer cards will support
* higher speeds than the default _transfer_sck defined here.
*
* Next, note the following from the SDCard specification (note to
* Figure 7-1):
*
* In any of the cases CMD1 is not recommended because it may be difficult for the host
* to distinguish between MultiMediaCard and SD Memory Card
*
* Hence CMD1 is not used for the initialisation sequence.
*
* The SPI interface mode is selected by asserting CS low and sending the
* reset command (CMD0). The card will respond with a (R1) response.
* In practice many cards initially respond with 0xff or invalid data
* which is ignored. Data is read until a valid response is received
* or the number of re-reads has exceeded a maximim count. If a valid
* response is not received then the CMD0 can be retried. This
* has been found to successfully initialise cards where the SPI master
* (on MCU) has been reset but the SDCard has not, so the first
* CMD0 may be lost.
*
* CMD8 is optionally sent to determine the voltage range supported, and
* indirectly determine whether it is a version 1.x SD/non-SD card or
* version 2.x. I'll just ignore this for now.
*
* ACMD41 is repeatedly issued to initialise the card, until "in idle"
* (bit 0) of the R1 response goes to '0', indicating it is initialised.
*
* You should also indicate whether the host supports High Capicity cards,
* and check whether the card is high capacity - i'll also ignore this
*
* SPI Protocol
* ------------
* The SD SPI protocol is based on transactions made up of 8-bit words, with
* the host starting every bus transaction by asserting the CS signal low. The
* card always responds to commands, data blocks and errors.
*
* The protocol supports a CRC, but by default it is off (except for the
* first reset CMD0, where the CRC can just be pre-calculated, and CMD8)
* I'll leave the CRC off I think!
*
* Standard capacity cards have variable data block sizes, whereas High
* Capacity cards fix the size of data block to 512 bytes. I'll therefore
* just always use the Standard Capacity cards with a block size of 512 bytes.
* This is set with CMD16.
*
* You can read and write single blocks (CMD17, CMD25) or multiple blocks
* (CMD18, CMD25). For simplicity, I'll just use single block accesses. When
* the card gets a read command, it responds with a response token, and then
* a data token or an error.
*
* SPI Command Format
* ------------------
* Commands are 6-bytes long, containing the command, 32-bit argument, and CRC.
*
* +---------------+------------+------------+-----------+----------+--------------+
* | 01 | cmd[5:0] | arg[31:24] | arg[23:16] | arg[15:8] | arg[7:0] | crc[6:0] | 1 |
* +---------------+------------+------------+-----------+----------+--------------+
*
* As I'm not using CRC, I can fix that byte to what is needed for CMD0 (0x95)
*
* All Application Specific commands shall be preceded with APP_CMD (CMD55).
*
* SPI Response Format
* -------------------
* The main response format (R1) is a status byte (normally zero). Key flags:
* idle - 1 if the card is in an idle state/initialising
* cmd - 1 if an illegal command code was detected
*
* +-------------------------------------------------+
* R1 | 0 | arg | addr | seq | crc | cmd | erase | idle |
* +-------------------------------------------------+
*
* R1b is the same, except it is followed by a busy signal (zeros) until
* the first non-zero byte when it is ready again.
*
* Data Response Token
* -------------------
* Every data block written to the card is acknowledged by a byte
* response token
*
* +----------------------+
* | xxx | 0 | status | 1 |
* +----------------------+
* 010 - OK!
* 101 - CRC Error
* 110 - Write Error
*
* Single Block Read and Write
* ---------------------------
*
* Block transfers have a byte header, followed by the data, followed
* by a 16-bit CRC. In our case, the data will always be 512 bytes.
*
* +------+---------+---------+- - - -+---------+-----------+----------+
* | 0xFE | data[0] | data[1] | | data[n] | crc[15:8] | crc[7:0] |
* +------+---------+---------+- - - -+---------+-----------+----------+
*/
/* If the target has no SPI support then SDCard is not supported */
#if DEVICE_SPI
#include "SDBlockDevice.h"
#include "rtos/ThisThread.h"
#include "platform/mbed_debug.h"
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
#include <errno.h>
using namespace mbed;
#ifndef MBED_CONF_SD_CMD_TIMEOUT
#define MBED_CONF_SD_CMD_TIMEOUT 5000 /*!< Timeout in ms for response */
#endif
#ifndef MBED_CONF_SD_CMD0_IDLE_STATE_RETRIES
#define MBED_CONF_SD_CMD0_IDLE_STATE_RETRIES 5 /*!< Number of retries for sending CMDO */
#endif
#ifndef MBED_CONF_SD_INIT_FREQUENCY
#define MBED_CONF_SD_INIT_FREQUENCY 100000 /*!< Initialization frequency Range (100KHz-400KHz) */
#endif
#define SD_COMMAND_TIMEOUT MBED_CONF_SD_CMD_TIMEOUT
#define SD_CMD0_GO_IDLE_STATE_RETRIES MBED_CONF_SD_CMD0_IDLE_STATE_RETRIES
#define SD_DBG 0 /*!< 1 - Enable debugging */
#define SD_CMD_TRACE 0 /*!< 1 - Enable SD command tracing */
#define SD_BLOCK_DEVICE_ERROR_WOULD_BLOCK -5001 /*!< operation would block */
#define SD_BLOCK_DEVICE_ERROR_UNSUPPORTED -5002 /*!< unsupported operation */
#define SD_BLOCK_DEVICE_ERROR_PARAMETER -5003 /*!< invalid parameter */
#define SD_BLOCK_DEVICE_ERROR_NO_INIT -5004 /*!< uninitialized */
#define SD_BLOCK_DEVICE_ERROR_NO_DEVICE -5005 /*!< device is missing or not connected */
#define SD_BLOCK_DEVICE_ERROR_WRITE_PROTECTED -5006 /*!< write protected */
#define SD_BLOCK_DEVICE_ERROR_UNUSABLE -5007 /*!< unusable card */
#define SD_BLOCK_DEVICE_ERROR_NO_RESPONSE -5008 /*!< No response from device */
#define SD_BLOCK_DEVICE_ERROR_CRC -5009 /*!< CRC error */
#define SD_BLOCK_DEVICE_ERROR_ERASE -5010 /*!< Erase error: reset/sequence */
#define SD_BLOCK_DEVICE_ERROR_WRITE -5011 /*!< SPI Write error: !SPI_DATA_ACCEPTED */
#define BLOCK_SIZE_HC 512 /*!< Block size supported for SD card is 512 bytes */
#define WRITE_BL_PARTIAL 0 /*!< Partial block write - Not supported */
#define SPI_CMD(x) (0x40 | (x & 0x3f))
/* R1 Response Format */
#define R1_NO_RESPONSE (0xFF)
#define R1_RESPONSE_RECV (0x80)
#define R1_IDLE_STATE (1 << 0)
#define R1_ERASE_RESET (1 << 1)
#define R1_ILLEGAL_COMMAND (1 << 2)
#define R1_COM_CRC_ERROR (1 << 3)
#define R1_ERASE_SEQUENCE_ERROR (1 << 4)
#define R1_ADDRESS_ERROR (1 << 5)
#define R1_PARAMETER_ERROR (1 << 6)
// Types
#define SDCARD_NONE 0 /**< No card is present */
#define SDCARD_V1 1 /**< v1.x Standard Capacity */
#define SDCARD_V2 2 /**< v2.x Standard capacity SD card */
#define SDCARD_V2HC 3 /**< v2.x High capacity SD card */
#define CARD_UNKNOWN 4 /**< Unknown or unsupported card */
/* SIZE in Bytes */
#define PACKET_SIZE 6 /*!< SD Packet size CMD+ARG+CRC */
#define R1_RESPONSE_SIZE 1 /*!< Size of R1 response */
#define R2_RESPONSE_SIZE 2 /*!< Size of R2 response */
#define R3_R7_RESPONSE_SIZE 5 /*!< Size of R3/R7 response */
/* R1b Response */
#define DEVICE_BUSY (0x00)
/* R2 Response Format */
#define R2_CARD_LOCKED (1 << 0)
#define R2_CMD_FAILED (1 << 1)
#define R2_ERROR (1 << 2)
#define R2_CC_ERROR (1 << 3)
#define R2_CC_FAILED (1 << 4)
#define R2_WP_VIOLATION (1 << 5)
#define R2_ERASE_PARAM (1 << 6)
#define R2_OUT_OF_RANGE (1 << 7)
/* R3 Response : OCR Register */
#define OCR_HCS_CCS (0x1 << 30)
#define OCR_LOW_VOLTAGE (0x01 << 24)
#define OCR_3_3V (0x1 << 20)
/* R7 response pattern for CMD8 */
#define CMD8_PATTERN (0xAA)
/* CRC Enable */
#define CRC_ENABLE (0) /*!< CRC 1 - Enable 0 - Disable */
/* Control Tokens */
#define SPI_DATA_RESPONSE_MASK (0x1F)
#define SPI_DATA_ACCEPTED (0x05)
#define SPI_DATA_CRC_ERROR (0x0B)
#define SPI_DATA_WRITE_ERROR (0x0D)
#define SPI_START_BLOCK (0xFE) /*!< For Single Block Read/Write and Multiple Block Read */
#define SPI_START_BLK_MUL_WRITE (0xFC) /*!< Start Multi-block write */
#define SPI_STOP_TRAN (0xFD) /*!< Stop Multi-block write */
#define SPI_DATA_READ_ERROR_MASK (0xF) /*!< Data Error Token: 4 LSB bits */
#define SPI_READ_ERROR (0x1 << 0) /*!< Error */
#define SPI_READ_ERROR_CC (0x1 << 1) /*!< CC Error*/
#define SPI_READ_ERROR_ECC_C (0x1 << 2) /*!< Card ECC failed */
#define SPI_READ_ERROR_OFR (0x1 << 3) /*!< Out of Range */
// Only HC block size is supported. Making this a static constant reduces code size.
const uint32_t SDBlockDevice::_block_size = BLOCK_SIZE_HC;
#if MBED_CONF_SD_CRC_ENABLED
SDBlockDevice::SDBlockDevice(PinName mosi, PinName miso, PinName sclk, PinName cs, uint64_t hz, bool crc_on)
: _sectors(0), _spi(mosi, miso, sclk), _cs(cs), _is_initialized(0),
_init_ref_count(0), _crc_on(crc_on)
#else
SDBlockDevice::SDBlockDevice(PinName mosi, PinName miso, PinName sclk, PinName cs, uint64_t hz, bool crc_on)
: _sectors(0), _spi(mosi, miso, sclk), _cs(cs), _is_initialized(0),
_init_ref_count(0)
#endif
{
_cs = 1;
_card_type = SDCARD_NONE;
// Set default to 100kHz for initialisation and 1MHz for data transfer
MBED_STATIC_ASSERT(((MBED_CONF_SD_INIT_FREQUENCY >= 100000) && (MBED_CONF_SD_INIT_FREQUENCY <= 400000)),
"Initialization frequency should be between 100KHz to 400KHz");
_init_sck = MBED_CONF_SD_INIT_FREQUENCY;
_transfer_sck = hz;
_erase_size = BLOCK_SIZE_HC;
}
#if MBED_CONF_SD_CRC_ENABLED
SDBlockDevice::SDBlockDevice(const spi_pinmap_t &spi_pinmap, PinName cs, uint64_t hz, bool crc_on)
: _sectors(0), _spi(spi_pinmap), _cs(cs), _is_initialized(0),
_init_ref_count(0), _crc_on(crc_on)
#else
SDBlockDevice::SDBlockDevice(const spi_pinmap_t &spi_pinmap, PinName cs, uint64_t hz, bool crc_on)
: _sectors(0), _spi(spi_pinmap), _cs(cs), _is_initialized(0),
_init_ref_count(0)
#endif
{
_cs = 1;
_card_type = SDCARD_NONE;
// Set default to 100kHz for initialisation and 1MHz for data transfer
MBED_STATIC_ASSERT(((MBED_CONF_SD_INIT_FREQUENCY >= 100000) && (MBED_CONF_SD_INIT_FREQUENCY <= 400000)),
"Initialization frequency should be between 100KHz to 400KHz");
_init_sck = MBED_CONF_SD_INIT_FREQUENCY;
_transfer_sck = hz;
_erase_size = BLOCK_SIZE_HC;
}
SDBlockDevice::~SDBlockDevice()
{
if (_is_initialized) {
deinit();
}
}
int SDBlockDevice::_initialise_card()
{
// Detail debugging is for commands
_dbg = SD_DBG ? SD_CMD_TRACE : 0;
int32_t status = BD_ERROR_OK;
uint32_t response, arg;
// Initialize the SPI interface: Card by default is in SD mode
_spi_init();
// The card is transitioned from SDCard mode to SPI mode by sending the CMD0 + CS Asserted("0")
if (_go_idle_state() != R1_IDLE_STATE) {
debug_if(SD_DBG, "No disk, or could not put SD card in to SPI idle state\n");
return SD_BLOCK_DEVICE_ERROR_NO_DEVICE;
}
// Send CMD8, if the card rejects the command then it's probably using the
// legacy protocol, or is a MMC, or just flat-out broken
status = _cmd8();
if (BD_ERROR_OK != status && SD_BLOCK_DEVICE_ERROR_UNSUPPORTED != status) {
return status;
}
#if MBED_CONF_SD_CRC_ENABLED
if (_crc_on) {
// Enable CRC
status = _cmd(CMD59_CRC_ON_OFF, _crc_on);
}
#endif
// Read OCR - CMD58 Response contains OCR register
if (BD_ERROR_OK != (status = _cmd(CMD58_READ_OCR, 0x0, 0x0, &response))) {
return status;
}
// Check if card supports voltage range: 3.3V
if (!(response & OCR_3_3V)) {
_card_type = CARD_UNKNOWN;
status = SD_BLOCK_DEVICE_ERROR_UNUSABLE;
return status;
}
// HCS is set 1 for HC/XC capacity cards for ACMD41, if supported
arg = 0x0;
if (SDCARD_V2 == _card_type) {
arg |= OCR_HCS_CCS;
}
/* Idle state bit in the R1 response of ACMD41 is used by the card to inform the host
* if initialization of ACMD41 is completed. "1" indicates that the card is still initializing.
* "0" indicates completion of initialization. The host repeatedly issues ACMD41 until
* this bit is set to "0".
*/
_spi_timer.start();
do {
status = _cmd(ACMD41_SD_SEND_OP_COND, arg, 1, &response);
} while ((response & R1_IDLE_STATE) && (_spi_timer.read_ms() < SD_COMMAND_TIMEOUT));
_spi_timer.stop();
// Initialization complete: ACMD41 successful
if ((BD_ERROR_OK != status) || (0x00 != response)) {
_card_type = CARD_UNKNOWN;
debug_if(SD_DBG, "Timeout waiting for card\n");
return status;
}
if (SDCARD_V2 == _card_type) {
// Get the card capacity CCS: CMD58
if (BD_ERROR_OK == (status = _cmd(CMD58_READ_OCR, 0x0, 0x0, &response))) {
// High Capacity card
if (response & OCR_HCS_CCS) {
_card_type = SDCARD_V2HC;
debug_if(SD_DBG, "Card Initialized: High Capacity Card \n");
} else {
debug_if(SD_DBG, "Card Initialized: Standard Capacity Card: Version 2.x \n");
}
}
} else {
_card_type = SDCARD_V1;
debug_if(SD_DBG, "Card Initialized: Version 1.x Card\n");
}
#if MBED_CONF_SD_CRC_ENABLED
if (!_crc_on) {
// Disable CRC
status = _cmd(CMD59_CRC_ON_OFF, _crc_on);
}
#else
status = _cmd(CMD59_CRC_ON_OFF, 0);
#endif
return status;
}
int SDBlockDevice::init()
{
int err;
lock();
if (!_is_initialized) {
_init_ref_count = 0;
}
_init_ref_count++;
if (_init_ref_count != 1) {
goto end;
}
err = _initialise_card();
_is_initialized = (err == BD_ERROR_OK);
if (!_is_initialized) {
debug_if(SD_DBG, "Fail to initialize card\n");
unlock();
return err;
}
debug_if(SD_DBG, "init card = %d\n", _is_initialized);
_sectors = _sd_sectors();
// CMD9 failed
if (0 == _sectors) {
unlock();
return BD_ERROR_DEVICE_ERROR;
}
// Set block length to 512 (CMD16)
if (_cmd(CMD16_SET_BLOCKLEN, _block_size) != 0) {
debug_if(SD_DBG, "Set %" PRIu32 "-byte block timed out\n", _block_size);
unlock();
return BD_ERROR_DEVICE_ERROR;
}
// Set SCK for data transfer
err = _freq();
if (err) {
unlock();
return err;
}
end:
unlock();
return BD_ERROR_OK;
}
int SDBlockDevice::deinit()
{
lock();
if (!_is_initialized) {
_init_ref_count = 0;
goto end;
}
_init_ref_count--;
if (_init_ref_count) {
goto end;
}
_is_initialized = false;
_sectors = 0;
end:
unlock();
return BD_ERROR_OK;
}
int SDBlockDevice::program(const void *b, bd_addr_t addr, bd_size_t size)
{
if (!is_valid_program(addr, size)) {
return SD_BLOCK_DEVICE_ERROR_PARAMETER;
}
lock();
if (!_is_initialized) {
unlock();
return SD_BLOCK_DEVICE_ERROR_NO_INIT;
}
const uint8_t *buffer = static_cast<const uint8_t *>(b);
int status = BD_ERROR_OK;
uint8_t response;
// Get block count
size_t blockCnt = size / _block_size;
// SDSC Card (CCS=0) uses byte unit address
// SDHC and SDXC Cards (CCS=1) use block unit address (512 Bytes unit)
if (SDCARD_V2HC == _card_type) {
addr = addr / _block_size;
}
// Send command to perform write operation
if (blockCnt == 1) {
// Single block write command
if (BD_ERROR_OK != (status = _cmd(CMD24_WRITE_BLOCK, addr))) {
unlock();
return status;
}
// Write data
response = _write(buffer, SPI_START_BLOCK, _block_size);
// Only CRC and general write error are communicated via response token
if (response != SPI_DATA_ACCEPTED) {
debug_if(SD_DBG, "Single Block Write failed: 0x%x \n", response);
status = SD_BLOCK_DEVICE_ERROR_WRITE;
}
} else {
// Pre-erase setting prior to multiple block write operation
_cmd(ACMD23_SET_WR_BLK_ERASE_COUNT, blockCnt, 1);
// Multiple block write command
if (BD_ERROR_OK != (status = _cmd(CMD25_WRITE_MULTIPLE_BLOCK, addr))) {
unlock();
return status;
}
// Write the data: one block at a time
do {
response = _write(buffer, SPI_START_BLK_MUL_WRITE, _block_size);
if (response != SPI_DATA_ACCEPTED) {
debug_if(SD_DBG, "Multiple Block Write failed: 0x%x \n", response);
break;
}
buffer += _block_size;
} while (--blockCnt); // Receive all blocks of data
/* In a Multiple Block write operation, the stop transmission will be done by
* sending 'Stop Tran' token instead of 'Start Block' token at the beginning
* of the next block
*/
_spi.write(SPI_STOP_TRAN);
}
_deselect();
unlock();
return status;
}
int SDBlockDevice::read(void *b, bd_addr_t addr, bd_size_t size)
{
if (!is_valid_read(addr, size)) {
return SD_BLOCK_DEVICE_ERROR_PARAMETER;
}
lock();
if (!_is_initialized) {
unlock();
return SD_BLOCK_DEVICE_ERROR_PARAMETER;
}
uint8_t *buffer = static_cast<uint8_t *>(b);
int status = BD_ERROR_OK;
size_t blockCnt = size / _block_size;
// SDSC Card (CCS=0) uses byte unit address
// SDHC and SDXC Cards (CCS=1) use block unit address (512 Bytes unit)
if (SDCARD_V2HC == _card_type) {
addr = addr / _block_size;
}
// Write command ro receive data
if (blockCnt > 1) {
status = _cmd(CMD18_READ_MULTIPLE_BLOCK, addr);
} else {
status = _cmd(CMD17_READ_SINGLE_BLOCK, addr);
}
if (BD_ERROR_OK != status) {
unlock();
return status;
}
// receive the data : one block at a time
while (blockCnt) {
if (0 != _read(buffer, _block_size)) {
status = SD_BLOCK_DEVICE_ERROR_NO_RESPONSE;
break;
}
buffer += _block_size;
--blockCnt;
}
_deselect();
// Send CMD12(0x00000000) to stop the transmission for multi-block transfer
if (size > _block_size) {
status = _cmd(CMD12_STOP_TRANSMISSION, 0x0);
}
unlock();
return status;
}
bool SDBlockDevice::_is_valid_trim(bd_addr_t addr, bd_size_t size)
{
return (
addr % _erase_size == 0 &&
size % _erase_size == 0 &&
addr + size <= this->size());
}
int SDBlockDevice::trim(bd_addr_t addr, bd_size_t size)
{
if (!_is_valid_trim(addr, size)) {
return SD_BLOCK_DEVICE_ERROR_PARAMETER;
}
lock();
if (!_is_initialized) {
unlock();
return SD_BLOCK_DEVICE_ERROR_NO_INIT;
}
int status = BD_ERROR_OK;
size -= _block_size;
// SDSC Card (CCS=0) uses byte unit address
// SDHC and SDXC Cards (CCS=1) use block unit address (512 Bytes unit)
if (SDCARD_V2HC == _card_type) {
size = size / _block_size;
addr = addr / _block_size;
}
// Start lba sent in start command
if (BD_ERROR_OK != (status = _cmd(CMD32_ERASE_WR_BLK_START_ADDR, addr))) {
unlock();
return status;
}
// End lba = addr+size sent in end addr command
if (BD_ERROR_OK != (status = _cmd(CMD33_ERASE_WR_BLK_END_ADDR, addr + size))) {
unlock();
return status;
}
status = _cmd(CMD38_ERASE, 0x0);
unlock();
return status;
}
bd_size_t SDBlockDevice::get_read_size() const
{
return _block_size;
}
bd_size_t SDBlockDevice::get_program_size() const
{
return _block_size;
}
bd_size_t SDBlockDevice::size() const
{
return _block_size * _sectors;
}
const char *SDBlockDevice::get_type() const
{
return "SD";
}
void SDBlockDevice::debug(bool dbg)
{
_dbg = dbg;
}
int SDBlockDevice::frequency(uint64_t freq)
{
lock();
_transfer_sck = freq;
int err = _freq();
unlock();
return err;
}
// PRIVATE FUNCTIONS
int SDBlockDevice::_freq(void)
{
// Max frequency supported is 25MHZ
if (_transfer_sck <= 25000000) {
_spi.frequency(_transfer_sck);
return 0;
} else { // TODO: Switch function to be implemented for higher frequency
_transfer_sck = 25000000;
_spi.frequency(_transfer_sck);
return -EINVAL;
}
}
uint8_t SDBlockDevice::_cmd_spi(SDBlockDevice::cmdSupported cmd, uint32_t arg)
{
uint8_t response;
char cmdPacket[PACKET_SIZE];
// Prepare the command packet
cmdPacket[0] = SPI_CMD(cmd);
cmdPacket[1] = (arg >> 24);
cmdPacket[2] = (arg >> 16);
cmdPacket[3] = (arg >> 8);
cmdPacket[4] = (arg >> 0);
#if MBED_CONF_SD_CRC_ENABLED
if (_crc_on) {
MbedCRC<POLY_7BIT_SD, 7> crc7;
uint32_t crc;
crc7.compute(cmdPacket, 5, &crc);
cmdPacket[5] = ((uint8_t) crc << 1) | 0x01;
} else
#endif
{
// CMD0 is executed in SD mode, hence should have correct CRC
// CMD8 CRC verification is always enabled
switch (cmd) {
case CMD0_GO_IDLE_STATE:
cmdPacket[5] = 0x95;
break;
case CMD8_SEND_IF_COND:
cmdPacket[5] = 0x87;
break;
default:
cmdPacket[5] = 0xFF; // Make sure bit 0-End bit is high
break;
}
}
// send a command
for (int i = 0; i < PACKET_SIZE; i++) {
_spi.write(cmdPacket[i]);
}
// The received byte immediataly following CMD12 is a stuff byte,
// it should be discarded before receive the response of the CMD12.
if (CMD12_STOP_TRANSMISSION == cmd) {
_spi.write(SPI_FILL_CHAR);
}
// Loop for response: Response is sent back within command response time (NCR), 0 to 8 bytes for SDC
for (int i = 0; i < 0x10; i++) {
response = _spi.write(SPI_FILL_CHAR);
// Got the response
if (!(response & R1_RESPONSE_RECV)) {
break;
}
}
return response;
}
int SDBlockDevice::_cmd(SDBlockDevice::cmdSupported cmd, uint32_t arg, bool isAcmd, uint32_t *resp)
{
int32_t status = BD_ERROR_OK;
uint32_t response;
// Select card and wait for card to be ready before sending next command
// Note: next command will fail if card is not ready
_select();
// No need to wait for card to be ready when sending the stop command
if (CMD12_STOP_TRANSMISSION != cmd) {
if (false == _wait_ready(SD_COMMAND_TIMEOUT)) {
debug_if(SD_DBG, "Card not ready yet \n");
}
}
// Re-try command
for (int i = 0; i < 3; i++) {
// Send CMD55 for APP command first
if (isAcmd) {
response = _cmd_spi(CMD55_APP_CMD, 0x0);
// Wait for card to be ready after CMD55
if (false == _wait_ready(SD_COMMAND_TIMEOUT)) {
debug_if(SD_DBG, "Card not ready yet \n");
}
}
// Send command over SPI interface
response = _cmd_spi(cmd, arg);
if (R1_NO_RESPONSE == response) {
debug_if(SD_DBG, "No response CMD:%d \n", cmd);
continue;
}
break;
}
// Pass the response to the command call if required
if (NULL != resp) {
*resp = response;
}
// Process the response R1 : Exit on CRC/Illegal command error/No response
if (R1_NO_RESPONSE == response) {
_deselect();
debug_if(SD_DBG, "No response CMD:%d response: 0x%" PRIx32 "\n", cmd, response);
return SD_BLOCK_DEVICE_ERROR_NO_DEVICE; // No device
}
if (response & R1_COM_CRC_ERROR) {
_deselect();
debug_if(SD_DBG, "CRC error CMD:%d response 0x%" PRIx32 "\n", cmd, response);
return SD_BLOCK_DEVICE_ERROR_CRC; // CRC error
}
if (response & R1_ILLEGAL_COMMAND) {
_deselect();
debug_if(SD_DBG, "Illegal command CMD:%d response 0x%" PRIx32 "\n", cmd, response);
if (CMD8_SEND_IF_COND == cmd) { // Illegal command is for Ver1 or not SD Card
_card_type = CARD_UNKNOWN;
}
return SD_BLOCK_DEVICE_ERROR_UNSUPPORTED; // Command not supported
}
debug_if(_dbg, "CMD:%d \t arg:0x%" PRIx32 " \t Response:0x%" PRIx32 "\n", cmd, arg, response);
// Set status for other errors
if ((response & R1_ERASE_RESET) || (response & R1_ERASE_SEQUENCE_ERROR)) {
status = SD_BLOCK_DEVICE_ERROR_ERASE; // Erase error
} else if ((response & R1_ADDRESS_ERROR) || (response & R1_PARAMETER_ERROR)) {
// Misaligned address / invalid address block length
status = SD_BLOCK_DEVICE_ERROR_PARAMETER;
}
// Get rest of the response part for other commands
switch (cmd) {
case CMD8_SEND_IF_COND: // Response R7
debug_if(_dbg, "V2-Version Card\n");
_card_type = SDCARD_V2; // fallthrough
// Note: No break here, need to read rest of the response
case CMD58_READ_OCR: // Response R3
response = (_spi.write(SPI_FILL_CHAR) << 24);
response |= (_spi.write(SPI_FILL_CHAR) << 16);
response |= (_spi.write(SPI_FILL_CHAR) << 8);
response |= _spi.write(SPI_FILL_CHAR);
debug_if(_dbg, "R3/R7: 0x%" PRIx32 "\n", response);
break;
case CMD12_STOP_TRANSMISSION: // Response R1b
case CMD38_ERASE:
_wait_ready(SD_COMMAND_TIMEOUT);
break;
case ACMD13_SD_STATUS: // Response R2
response = _spi.write(SPI_FILL_CHAR);
debug_if(_dbg, "R2: 0x%" PRIx32 "\n", response);
break;
default: // Response R1
break;
}
// Pass the updated response to the command
if (NULL != resp) {
*resp = response;
}
// Do not deselect card if read is in progress.
if (((CMD9_SEND_CSD == cmd) || (ACMD22_SEND_NUM_WR_BLOCKS == cmd) ||
(CMD24_WRITE_BLOCK == cmd) || (CMD25_WRITE_MULTIPLE_BLOCK == cmd) ||
(CMD17_READ_SINGLE_BLOCK == cmd) || (CMD18_READ_MULTIPLE_BLOCK == cmd))
&& (BD_ERROR_OK == status)) {
return BD_ERROR_OK;
}
// Deselect card
_deselect();
return status;
}
int SDBlockDevice::_cmd8()
{
uint32_t arg = (CMD8_PATTERN << 0); // [7:0]check pattern
uint32_t response = 0;
int32_t status = BD_ERROR_OK;
arg |= (0x1 << 8); // 2.7-3.6V // [11:8]supply voltage(VHS)
status = _cmd(CMD8_SEND_IF_COND, arg, 0x0, &response);
// Verify voltage and pattern for V2 version of card
if ((BD_ERROR_OK == status) && (SDCARD_V2 == _card_type)) {
// If check pattern is not matched, CMD8 communication is not valid
if ((response & 0xFFF) != arg) {
debug_if(SD_DBG, "CMD8 Pattern mismatch 0x%" PRIx32 " : 0x%" PRIx32 "\n", arg, response);
_card_type = CARD_UNKNOWN;
status = SD_BLOCK_DEVICE_ERROR_UNUSABLE;
}
}
return status;
}
uint32_t SDBlockDevice::_go_idle_state()
{
uint32_t response;
/* Reseting the MCU SPI master may not reset the on-board SDCard, in which
* case when MCU power-on occurs the SDCard will resume operations as
* though there was no reset. In this scenario the first CMD0 will
* not be interpreted as a command and get lost. For some cards retrying
* the command overcomes this situation. */
for (int i = 0; i < SD_CMD0_GO_IDLE_STATE_RETRIES; i++) {
_cmd(CMD0_GO_IDLE_STATE, 0x0, 0x0, &response);
if (R1_IDLE_STATE == response) {
break;
}
rtos::ThisThread::sleep_for(1);
}
return response;
}
int SDBlockDevice::_read_bytes(uint8_t *buffer, uint32_t length)
{
uint16_t crc;
// read until start byte (0xFE)
if (false == _wait_token(SPI_START_BLOCK)) {
debug_if(SD_DBG, "Read timeout\n");
_deselect();
return SD_BLOCK_DEVICE_ERROR_NO_RESPONSE;
}
// read data
for (uint32_t i = 0; i < length; i++) {
buffer[i] = _spi.write(SPI_FILL_CHAR);
}
// Read the CRC16 checksum for the data block
crc = (_spi.write(SPI_FILL_CHAR) << 8);
crc |= _spi.write(SPI_FILL_CHAR);
#if MBED_CONF_SD_CRC_ENABLED
if (_crc_on) {
mbed::MbedCRC<POLY_16BIT_CCITT, 16> crc16(0, 0, false, false);
uint32_t crc_result;
// Compute and verify checksum
crc16.compute(buffer, length, &crc_result);
if (crc_result != crc) {
debug_if(SD_DBG, "_read_bytes: Invalid CRC received 0x%" PRIx16 " result of computation 0x%" PRIx32 "\n",
crc, crc_result);
_deselect();
return SD_BLOCK_DEVICE_ERROR_CRC;
}
}
#endif
_deselect();
return 0;
}
int SDBlockDevice::_read(uint8_t *buffer, uint32_t length)
{
uint16_t crc;
// read until start byte (0xFE)
if (false == _wait_token(SPI_START_BLOCK)) {
debug_if(SD_DBG, "Read timeout\n");
return SD_BLOCK_DEVICE_ERROR_NO_RESPONSE;
}
// read data
_spi.write(NULL, 0, (char *)buffer, length);
// Read the CRC16 checksum for the data block
crc = (_spi.write(SPI_FILL_CHAR) << 8);
crc |= _spi.write(SPI_FILL_CHAR);
#if MBED_CONF_SD_CRC_ENABLED
if (_crc_on) {
mbed::MbedCRC<POLY_16BIT_CCITT, 16> crc16(0, 0, false, false);
uint32_t crc_result;
// Compute and verify checksum
crc16.compute((void *)buffer, length, &crc_result);
if ((uint16_t)crc_result != crc) {
debug_if(SD_DBG, "_read_bytes: Invalid CRC received 0x%" PRIx16 " result of computation 0x%" PRIx16 "\n",
crc, (uint16_t)crc_result);
return SD_BLOCK_DEVICE_ERROR_CRC;
}
}
#endif
return 0;
}
uint8_t SDBlockDevice::_write(const uint8_t *buffer, uint8_t token, uint32_t length)
{
uint32_t crc = (~0);
uint8_t response = 0xFF;
// indicate start of block
_spi.write(token);
// write the data
_spi.write((char *)buffer, length, NULL, 0);
#if MBED_CONF_SD_CRC_ENABLED
if (_crc_on) {
mbed::MbedCRC<POLY_16BIT_CCITT, 16> crc16(0, 0, false, false);
// Compute CRC
crc16.compute(buffer, length, &crc);
}
#endif
// write the checksum CRC16
_spi.write(crc >> 8);
_spi.write(crc);
// check the response token
response = _spi.write(SPI_FILL_CHAR);
// Wait for last block to be written
if (false == _wait_ready(SD_COMMAND_TIMEOUT)) {
debug_if(SD_DBG, "Card not ready yet \n");
}
return (response & SPI_DATA_RESPONSE_MASK);
}
static uint32_t ext_bits(unsigned char *data, int msb, int lsb)
{
uint32_t bits = 0;
uint32_t size = 1 + msb - lsb;
for (uint32_t i = 0; i < size; i++) {
uint32_t position = lsb + i;
uint32_t byte = 15 - (position >> 3);
uint32_t bit = position & 0x7;
uint32_t value = (data[byte] >> bit) & 1;
bits |= value << i;
}
return bits;
}
bd_size_t SDBlockDevice::_sd_sectors()
{
uint32_t c_size, c_size_mult, read_bl_len;
uint32_t block_len, mult, blocknr;
uint32_t hc_c_size;
bd_size_t blocks = 0, capacity = 0;
// CMD9, Response R2 (R1 byte + 16-byte block read)
if (_cmd(CMD9_SEND_CSD, 0x0) != 0x0) {
debug_if(SD_DBG, "Didn't get a response from the disk\n");
return 0;
}
uint8_t csd[16];
if (_read_bytes(csd, 16) != 0) {
debug_if(SD_DBG, "Couldn't read csd response from disk\n");
return 0;
}
// csd_structure : csd[127:126]
int csd_structure = ext_bits(csd, 127, 126);
switch (csd_structure) {
case 0:
c_size = ext_bits(csd, 73, 62); // c_size : csd[73:62]
c_size_mult = ext_bits(csd, 49, 47); // c_size_mult : csd[49:47]
read_bl_len = ext_bits(csd, 83, 80); // read_bl_len : csd[83:80] - the *maximum* read block length
block_len = 1 << read_bl_len; // BLOCK_LEN = 2^READ_BL_LEN
mult = 1 << (c_size_mult + 2); // MULT = 2^C_SIZE_MULT+2 (C_SIZE_MULT < 8)
blocknr = (c_size + 1) * mult; // BLOCKNR = (C_SIZE+1) * MULT
capacity = (bd_size_t) blocknr * block_len; // memory capacity = BLOCKNR * BLOCK_LEN
blocks = capacity / _block_size;
debug_if(SD_DBG, "Standard Capacity: c_size: %" PRIu32 " \n", c_size);
debug_if(SD_DBG, "Sectors: 0x%" PRIx64 " : %" PRIu64 "\n", blocks, blocks);
debug_if(SD_DBG, "Capacity: 0x%" PRIx64 " : %" PRIu64 " MB\n", capacity, (capacity / (1024U * 1024U)));
// ERASE_BLK_EN = 1: Erase in multiple of 512 bytes supported
if (ext_bits(csd, 46, 46)) {
_erase_size = BLOCK_SIZE_HC;
} else {
// ERASE_BLK_EN = 1: Erase in multiple of SECTOR_SIZE supported
_erase_size = BLOCK_SIZE_HC * (ext_bits(csd, 45, 39) + 1);
}
break;
case 1:
hc_c_size = ext_bits(csd, 69, 48); // device size : C_SIZE : [69:48]
blocks = (hc_c_size + 1) << 10; // block count = C_SIZE+1) * 1K byte (512B is block size)
debug_if(SD_DBG, "SDHC/SDXC Card: hc_c_size: %" PRIu32 " \n", hc_c_size);
debug_if(SD_DBG, "Sectors: 0x%" PRIx64 "x : %" PRIu64 "\n", blocks, blocks);
debug_if(SD_DBG, "Capacity: %" PRIu64 " MB\n", (blocks / (2048U)));
// ERASE_BLK_EN is fixed to 1, which means host can erase one or multiple of 512 bytes.
_erase_size = BLOCK_SIZE_HC;
break;
default:
debug_if(SD_DBG, "CSD struct unsupported\r\n");
return 0;
};
return blocks;
}
// SPI function to wait till chip is ready and sends start token
bool SDBlockDevice::_wait_token(uint8_t token)
{
_spi_timer.reset();
_spi_timer.start();
do {
if (token == _spi.write(SPI_FILL_CHAR)) {
_spi_timer.stop();
return true;
}
} while (_spi_timer.read_ms() < 300); // Wait for 300 msec for start token
_spi_timer.stop();
debug_if(SD_DBG, "_wait_token: timeout\n");
return false;
}
// SPI function to wait till chip is ready
// The host controller should wait for end of the process until DO goes high (a 0xFF is received).
bool SDBlockDevice::_wait_ready(uint16_t ms)
{
uint8_t response;
_spi_timer.reset();
_spi_timer.start();
do {
response = _spi.write(SPI_FILL_CHAR);
if (response == 0xFF) {
_spi_timer.stop();
return true;
}
} while (_spi_timer.read_ms() < ms);
_spi_timer.stop();
return false;
}
// SPI function to wait for count
void SDBlockDevice::_spi_wait(uint8_t count)
{
for (uint8_t i = 0; i < count; ++i) {
_spi.write(SPI_FILL_CHAR);
}
}
void SDBlockDevice::_spi_init()
{
_spi.lock();
// Set to SCK for initialization, and clock card with cs = 1
_spi.frequency(_init_sck);
_spi.format(8, 0);
_spi.set_default_write_value(SPI_FILL_CHAR);
// Initial 74 cycles required for few cards, before selecting SPI mode
_cs = 1;
_spi_wait(10);
_spi.unlock();
}
void SDBlockDevice::_select()
{
_spi.lock();
_spi.write(SPI_FILL_CHAR);
_cs = 0;
}
void SDBlockDevice::_deselect()
{
_cs = 1;
_spi.write(SPI_FILL_CHAR);
_spi.unlock();
}
#endif /* DEVICE_SPI */