mbed-os/components/storage/blockdevice/COMPONENT_SPIF/SPIFBlockDevice.cpp

777 lines
25 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "drivers/internal/SFDP.h"
#include "SPIFBlockDevice.h"
#include "rtos/ThisThread.h"
#include "mbed_critical.h"
#include <string.h>
#include <inttypes.h>
#include "mbed_trace.h"
#define TRACE_GROUP "SPIF"
using namespace mbed;
/* Default SPIF Parameters */
/****************************/
#define SPIF_DEFAULT_READ_SIZE 1
#define SPIF_DEFAULT_PROG_SIZE 1
#define SPIF_DEFAULT_SE_SIZE 4096
#define SPI_MAX_STATUS_REGISTER_SIZE 2
#ifndef UINT64_MAX
#define UINT64_MAX -1
#endif
#define SPI_NO_ADDRESS_COMMAND UINT64_MAX
// Status Register Bits
#define SPIF_STATUS_BIT_WIP 0x1 //Write In Progress
#define SPIF_STATUS_BIT_WEL 0x2 // Write Enable Latch
/* Basic Parameters Table Parsing */
/**********************************/
//READ Instruction support according to BUS Configuration
#define SPIF_BASIC_PARAM_TABLE_FAST_READ_SUPPORT_BYTE 2
#define SPIF_BASIC_PARAM_TABLE_QPI_READ_SUPPORT_BYTE 16
#define SPIF_BASIC_PARAM_TABLE_222_READ_INST_BYTE 23
#define SPIF_BASIC_PARAM_TABLE_122_READ_INST_BYTE 15
#define SPIF_BASIC_PARAM_TABLE_112_READ_INST_BYTE 13
// Address Length
#define SPIF_ADDR_SIZE_3_BYTES 3
#define SPIF_ADDR_SIZE_4_BYTES 4
// Default read/legacy erase instructions
#define SPIF_INST_READ_DEFAULT 0x03
#define SPIF_INST_LEGACY_ERASE_DEFAULT (-1)
#define IS_MEM_READY_MAX_RETRIES 10000
enum spif_default_instructions {
SPIF_NOP = 0x00, // No operation
SPIF_PP = 0x02, // Page Program data
SPIF_READ = 0x03, // Read data
SPIF_SE = 0x20, // 4KB Sector Erase
SPIF_SFDP = 0x5a, // Read SFDP
SPIF_WRSR = 0x01, // Write Status/Configuration Register
SPIF_WRDI = 0x04, // Write Disable
SPIF_RDSR = 0x05, // Read Status Register
SPIF_WREN = 0x06, // Write Enable
SPIF_RSTEN = 0x66, // Reset Enable
SPIF_RST = 0x99, // Reset
SPIF_RDID = 0x9f, // Read Manufacturer and JDEC Device ID
SPIF_ULBPR = 0x98, // Clears all write-protection bits in the Block-Protection register,
SPIF_4BEN = 0xB7, // Enable 4-byte address mode
SPIF_4BDIS = 0xE9, // Disable 4-byte address mode
};
// Mutex is used for some SPI Driver commands that must be done sequentially with no other commands in between
// e.g. (1)Set Write Enable, (2)Program, (3)Wait Memory Ready
SingletonPtr<PlatformMutex> SPIFBlockDevice::_mutex;
//***********************
// SPIF Block Device APIs
//***********************
SPIFBlockDevice::SPIFBlockDevice(PinName mosi, PinName miso, PinName sclk, PinName csel, int freq)
:
_spi(mosi, miso, sclk), _cs(csel), _prog_instruction(0), _erase_instruction(0),
_page_size_bytes(0), _init_ref_count(0), _is_initialized(false)
{
_address_size = SPIF_ADDR_SIZE_3_BYTES;
// Initial SFDP read tables are read with 8 dummy cycles
// Default Bus Setup 1_1_1 with 0 dummy and mode cycles
_read_dummy_and_mode_cycles = 8;
_write_dummy_and_mode_cycles = 0;
_dummy_and_mode_cycles = _read_dummy_and_mode_cycles;
_sfdp_info.bptbl.device_size_bytes = 0;
_sfdp_info.bptbl.legacy_erase_instruction = SPIF_INST_LEGACY_ERASE_DEFAULT;
_sfdp_info.smptbl.regions_min_common_erase_size = 0;
_sfdp_info.smptbl.region_cnt = 1;
_sfdp_info.smptbl.region_erase_types_bitfld[0] = SFDP_ERASE_BITMASK_NONE;
// Set default read/erase instructions
_read_instruction = SPIF_INST_READ_DEFAULT;
if (SPIF_BD_ERROR_OK != _spi_set_frequency(freq)) {
tr_error("SPI Set Frequency Failed");
}
_cs = 1;
}
int SPIFBlockDevice::init()
{
uint8_t vendor_device_ids[4];
size_t data_length = 3;
int status = SPIF_BD_ERROR_OK;
spif_bd_error spi_status = SPIF_BD_ERROR_OK;
_sfdp_info.bptbl.addr = 0x0;
_sfdp_info.bptbl.size = 0;
_sfdp_info.smptbl.addr = 0x0;
_sfdp_info.smptbl.size = 0;
_mutex->lock();
if (!_is_initialized) {
_init_ref_count = 0;
}
_init_ref_count++;
if (_init_ref_count != 1) {
goto exit_point;
}
// Soft Reset
if (-1 == _reset_flash_mem()) {
tr_error("init - Unable to initialize flash memory, tests failed");
status = SPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
} else {
tr_debug("Initialize flash memory OK");
}
/* Read Manufacturer ID (1byte), and Device ID (2bytes)*/
spi_status = _spi_send_general_command(SPIF_RDID, SPI_NO_ADDRESS_COMMAND, NULL, 0, (char *)vendor_device_ids,
data_length);
if (spi_status != SPIF_BD_ERROR_OK) {
tr_error("init - Read Vendor ID Failed");
status = SPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
switch (vendor_device_ids[0]) {
case 0xbf:
// SST devices come preset with block protection
// enabled for some regions, issue global protection unlock to clear
_set_write_enable();
_spi_send_general_command(SPIF_ULBPR, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0);
break;
}
//Synchronize Device
if (false == _is_mem_ready()) {
tr_error("init - _is_mem_ready Failed");
status = SPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
/**************************** Parse SFDP Header ***********************************/
if (sfdp_parse_headers(callback(this, &SPIFBlockDevice::_spi_send_read_sfdp_command), _sfdp_info) < 0) {
tr_error("init - Parse SFDP Headers Failed");
status = SPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
/**************************** Parse Basic Parameters Table ***********************************/
if (_sfdp_parse_basic_param_table(callback(this, &SPIFBlockDevice::_spi_send_read_sfdp_command), _sfdp_info) < 0) {
tr_error("init - Parse Basic Param Table Failed");
status = SPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
/**************************** Parse Sector Map Table ***********************************/
_sfdp_info.smptbl.region_size[0] = _sfdp_info.bptbl.device_size_bytes;
// If there's no region map, we have a single region sized the entire device size
_sfdp_info.smptbl.region_high_boundary[0] = _sfdp_info.bptbl.device_size_bytes - 1;
if ((_sfdp_info.smptbl.addr != 0) && (0 != _sfdp_info.smptbl.size)) {
tr_debug("init - Parsing Sector Map Table - addr: 0x%" PRIx32 "h, Size: %d", _sfdp_info.smptbl.addr,
_sfdp_info.smptbl.size);
if (sfdp_parse_sector_map_table(callback(this, &SPIFBlockDevice::_spi_send_read_sfdp_command),
_sfdp_info.smptbl) < 0) {
tr_error("init - Parse Sector Map Table Failed");
status = SPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
}
// Configure BUS Mode to 1_1_1 for all commands other than Read
// Dummy And Mode Cycles Back default 0
_dummy_and_mode_cycles = _write_dummy_and_mode_cycles;
_is_initialized = true;
tr_debug("Device size: %llu Kbytes", _sfdp_info.bptbl.device_size_bytes / 1024);
if (_sfdp_info.bptbl.device_size_bytes > (1 << 24)) {
tr_debug("Size is bigger than 16MB and thus address does not fit in 3 byte, switch to 4 byte address mode");
_spi_send_general_command(SPIF_4BEN, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0);
_address_size = SPIF_ADDR_SIZE_4_BYTES;
}
exit_point:
_mutex->unlock();
return status;
}
int SPIFBlockDevice::deinit()
{
spif_bd_error status = SPIF_BD_ERROR_OK;
_mutex->lock();
if (!_is_initialized) {
_init_ref_count = 0;
goto exit_point;
}
_init_ref_count--;
if (_init_ref_count) {
goto exit_point;
}
// Disable Device for Writing
status = _spi_send_general_command(SPIF_WRDI, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0);
if (status != SPIF_BD_ERROR_OK) {
tr_error("Write Disable failed");
}
_is_initialized = false;
exit_point:
_mutex->unlock();
return status;
}
int SPIFBlockDevice::read(void *buffer, bd_addr_t addr, bd_size_t size)
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
int status = SPIF_BD_ERROR_OK;
tr_debug("Read - Inst: 0x%xh", _read_instruction);
_mutex->lock();
// Set Dummy Cycles for Specific Read Command Mode
_dummy_and_mode_cycles = _read_dummy_and_mode_cycles;
status = _spi_send_read_command(_read_instruction, static_cast<uint8_t *>(buffer), addr, size);
// Set Dummy Cycles for all other command modes
_dummy_and_mode_cycles = _write_dummy_and_mode_cycles;
_mutex->unlock();
return status;
}
int SPIFBlockDevice::program(const void *buffer, bd_addr_t addr, bd_size_t size)
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
bool program_failed = false;
int status = SPIF_BD_ERROR_OK;
uint32_t offset = 0;
uint32_t chunk = 0;
tr_debug("program - Buff: 0x%" PRIx32 "h, addr: %llu, size: %llu", (uint32_t)buffer, addr, size);
while (size > 0) {
// Write on _page_size_bytes boundaries (Default 256 bytes a page)
offset = addr % _page_size_bytes;
chunk = (offset + size < _page_size_bytes) ? size : (_page_size_bytes - offset);
_mutex->lock();
//Send WREN
if (_set_write_enable() != 0) {
tr_error("Write Enabe failed");
program_failed = true;
status = SPIF_BD_ERROR_WREN_FAILED;
goto exit_point;
}
_spi_send_program_command(_prog_instruction, buffer, addr, chunk);
buffer = static_cast<const uint8_t *>(buffer) + chunk;
addr += chunk;
size -= chunk;
if (false == _is_mem_ready()) {
tr_error("Device not ready after write, failed");
program_failed = true;
status = SPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_mutex->unlock();
}
exit_point:
if (program_failed) {
_mutex->unlock();
}
return status;
}
int SPIFBlockDevice::erase(bd_addr_t addr, bd_size_t in_size)
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
int type = 0;
uint32_t offset = 0;
uint32_t chunk = 4096;
int cur_erase_inst = _erase_instruction;
int size = (int)in_size;
bool erase_failed = false;
int status = SPIF_BD_ERROR_OK;
// Find region of erased address
int region = sfdp_find_addr_region(addr, _sfdp_info);
if (region < 0) {
tr_error("no region found for address %llu", addr);
return SPIF_BD_ERROR_INVALID_ERASE_PARAMS;
}
// Erase Types of selected region
uint8_t bitfield = _sfdp_info.smptbl.region_erase_types_bitfld[region];
tr_debug("erase - addr: %llu, in_size: %llu", addr, in_size);
if ((addr + in_size) > _sfdp_info.bptbl.device_size_bytes) {
tr_error("erase exceeds flash device size");
return SPIF_BD_ERROR_INVALID_ERASE_PARAMS;
}
if (((addr % get_erase_size(addr)) != 0) || (((addr + in_size) % get_erase_size(addr + in_size - 1)) != 0)) {
tr_error("invalid erase - unaligned address and size");
return SPIF_BD_ERROR_INVALID_ERASE_PARAMS;
}
// For each iteration erase the largest section supported by current region
while (size > 0) {
// iterate to find next Largest erase type ( a. supported by region, b. smaller than size)
// find the matching instruction and erase size chunk for that type.
type = sfdp_iterate_next_largest_erase_type(bitfield, size, (unsigned int)addr, region, _sfdp_info.smptbl);
cur_erase_inst = _sfdp_info.smptbl.erase_type_inst_arr[type];
offset = addr % _sfdp_info.smptbl.erase_type_size_arr[type];
chunk = ((offset + size) < _sfdp_info.smptbl.erase_type_size_arr[type]) ?
size : (_sfdp_info.smptbl.erase_type_size_arr[type] - offset);
tr_debug("erase - addr: %llu, size:%d, Inst: 0x%xh, chunk: %" PRIu32 " , ",
addr, size, cur_erase_inst, chunk);
tr_debug("erase - Region: %d, Type:%d",
region, type);
_mutex->lock();
if (_set_write_enable() != 0) {
tr_error("SPI Erase Device not ready - failed");
erase_failed = true;
status = SPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_spi_send_erase_command(cur_erase_inst, addr, size);
addr += chunk;
size -= chunk;
if ((size > 0) && (addr > _sfdp_info.smptbl.region_high_boundary[region])) {
// erase crossed to next region
region++;
bitfield = _sfdp_info.smptbl.region_erase_types_bitfld[region];
}
if (false == _is_mem_ready()) {
tr_error("SPI After Erase Device not ready - failed");
erase_failed = true;
status = SPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_mutex->unlock();
}
exit_point:
if (erase_failed) {
_mutex->unlock();
}
return status;
}
bd_size_t SPIFBlockDevice::get_read_size() const
{
// Assuming all devices support 1byte read granularity
return SPIF_DEFAULT_READ_SIZE;
}
bd_size_t SPIFBlockDevice::get_program_size() const
{
// Assuming all devices support 1byte program granularity
return SPIF_DEFAULT_PROG_SIZE;
}
bd_size_t SPIFBlockDevice::get_erase_size() const
{
// return minimal erase size supported by all regions (0 if none exists)
return _sfdp_info.smptbl.regions_min_common_erase_size;
}
// Find minimal erase size supported by the region to which the address belongs to
bd_size_t SPIFBlockDevice::get_erase_size(bd_addr_t addr) const
{
// Find region of current address
int region = sfdp_find_addr_region(addr, _sfdp_info);
unsigned int min_region_erase_size = _sfdp_info.smptbl.regions_min_common_erase_size;
int8_t type_mask = SFDP_ERASE_BITMASK_TYPE1;
int i_ind = 0;
if (region != -1) {
type_mask = 0x01;
for (i_ind = 0; i_ind < 4; i_ind++) {
// loop through erase types bitfield supported by region
if (_sfdp_info.smptbl.region_erase_types_bitfld[region] & type_mask) {
min_region_erase_size = _sfdp_info.smptbl.erase_type_size_arr[i_ind];
break;
}
type_mask = type_mask << 1;
}
if (i_ind == 4) {
tr_error("no erase type was found for region addr");
}
}
return (bd_size_t)min_region_erase_size;
}
bd_size_t SPIFBlockDevice::size() const
{
if (!_is_initialized) {
return 0;
}
return _sfdp_info.bptbl.device_size_bytes;
}
int SPIFBlockDevice::get_erase_value() const
{
return 0xFF;
}
const char *SPIFBlockDevice::get_type() const
{
return "SPIF";
}
/***************************************************/
/*********** SPI Driver API Functions **************/
/***************************************************/
spif_bd_error SPIFBlockDevice::_spi_set_frequency(int freq)
{
_spi.frequency(freq);
return SPIF_BD_ERROR_OK;
}
spif_bd_error SPIFBlockDevice::_spi_send_read_command(int read_inst, uint8_t *buffer, bd_addr_t addr, bd_size_t size)
{
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
int dummy_byte = 0;
// csel must go low for the entire command (Inst, Address and Data)
_cs = 0;
// Write 1 byte Instruction
_spi.write(read_inst);
// Write Address (can be either 3 or 4 bytes long)
for (int address_shift = ((_address_size - 1) * 8); address_shift >= 0; address_shift -= 8) {
_spi.write((addr >> address_shift) & 0xFF);
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
// Read Data
for (bd_size_t i = 0; i < size; i++) {
buffer[i] = _spi.write(0);
}
// csel back to high
_cs = 1;
return SPIF_BD_ERROR_OK;
}
int SPIFBlockDevice::_spi_send_read_sfdp_command(bd_addr_t addr, void *rx_buffer, bd_size_t rx_length)
{
// Set 1-1-1 bus mode for SFDP header parsing
// Initial SFDP read tables are read with 8 dummy cycles
_read_dummy_and_mode_cycles = 8;
_dummy_and_mode_cycles = 8;
int status = _spi_send_read_command(SPIF_SFDP, (uint8_t *)rx_buffer, addr, rx_length);
if (status < 0) {
tr_error("_spi_send_read_sfdp_command failed");
}
return status;
}
spif_bd_error SPIFBlockDevice::_spi_send_program_command(int prog_inst, const void *buffer, bd_addr_t addr,
bd_size_t size)
{
// Send Program (write) command to device driver
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
int dummy_byte = 0;
uint8_t *data = (uint8_t *)buffer;
// csel must go low for the entire command (Inst, Address and Data)
_cs = 0;
// Write 1 byte Instruction
_spi.write(prog_inst);
// Write Address (can be either 3 or 4 bytes long)
for (int address_shift = ((_address_size - 1) * 8); address_shift >= 0; address_shift -= 8) {
_spi.write((addr >> address_shift) & 0xFF);
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
// Write Data
for (bd_size_t i = 0; i < size; i++) {
_spi.write(data[i]);
}
// csel back to high
_cs = 1;
return SPIF_BD_ERROR_OK;
}
spif_bd_error SPIFBlockDevice::_spi_send_erase_command(int erase_inst, bd_addr_t addr, bd_size_t size)
{
tr_debug("Erase Inst: 0x%xh, addr: %llu, size: %llu", erase_inst, addr, size);
addr = (((int)addr) & 0xFFFFF000);
_spi_send_general_command(erase_inst, addr, NULL, 0, NULL, 0);
return SPIF_BD_ERROR_OK;
}
spif_bd_error SPIFBlockDevice::_spi_send_general_command(int instruction, bd_addr_t addr, char *tx_buffer,
size_t tx_length, char *rx_buffer, size_t rx_length)
{
// Send a general command Instruction to driver
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
uint8_t dummy_byte = 0x00;
// csel must go low for the entire command (Inst, Address and Data)
_cs = 0;
// Write 1 byte Instruction
_spi.write(instruction);
// Reading SPI Bus registers does not require Flash Address
if (addr != SPI_NO_ADDRESS_COMMAND) {
// Write Address (can be either 3 or 4 bytes long)
for (int address_shift = ((_address_size - 1) * 8); address_shift >= 0; address_shift -= 8) {
_spi.write((addr >> address_shift) & 0xFF);
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
}
// Read/Write Data
_spi.write(tx_buffer, (int)tx_length, rx_buffer, (int)rx_length);
// csel back to high
_cs = 1;
return SPIF_BD_ERROR_OK;
}
/*********************************************************/
/********** SFDP Parsing and Detection Functions *********/
/*********************************************************/
int SPIFBlockDevice::_sfdp_parse_basic_param_table(Callback<int(bd_addr_t, void *, bd_size_t)> sfdp_reader,
mbed::sfdp_hdr_info &sfdp_info)
{
uint8_t param_table[SFDP_BASIC_PARAMS_TBL_SIZE]; /* Up To 20 DWORDS = 80 Bytes */
int status = sfdp_reader(sfdp_info.bptbl.addr, param_table, sfdp_info.bptbl.size);
if (status != SPIF_BD_ERROR_OK) {
tr_error("init - Read SFDP First Table Failed");
return -1;
}
// Check address size, currently only supports 3byte addresses
if ((param_table[2] & 0x4) != 0 || (param_table[7] & 0x80) != 0) {
tr_error("init - verify 3byte addressing Failed");
return -1;
}
if (sfdp_detect_device_density(param_table, _sfdp_info.bptbl) < 0) {
tr_error("Detecting device density failed");
return -1;
}
// Set Default read/program/erase Instructions
_read_instruction = SPIF_READ;
_prog_instruction = SPIF_PP;
_erase_instruction = SPIF_SE;
// Set Page Size (SPI write must be done on Page limits)
_page_size_bytes = sfdp_detect_page_size(param_table, sfdp_info.bptbl.size);
// Detect and Set Erase Types
if (sfdp_detect_erase_types_inst_and_size(param_table, sfdp_info) < 0) {
tr_error("Init - Detecting erase types instructions/sizes failed");
return -1;
}
_erase_instruction = sfdp_info.bptbl.legacy_erase_instruction;
// Detect and Set fastest Bus mode (default 1-1-1)
_sfdp_detect_best_bus_read_mode(param_table, sfdp_info.bptbl.size, _read_instruction);
return 0;
}
int SPIFBlockDevice::_sfdp_detect_best_bus_read_mode(uint8_t *basic_param_table_ptr, int basic_param_table_size,
int &read_inst)
{
do {
// TBD - SPIF Dual Read Modes Require SPI driver support
_read_dummy_and_mode_cycles = 0;
tr_debug("Read Bus Mode set to 1-1-1, Instruction: 0x%xh", read_inst);
} while (false);
return 0;
}
int SPIFBlockDevice::_reset_flash_mem()
{
// Perform Soft Reset of the Device prior to initialization
int status = 0;
char status_value[2] = {0};
tr_info("_reset_flash_mem:");
//Read the Status Register from device
if (SPIF_BD_ERROR_OK == _spi_send_general_command(SPIF_RDSR, SPI_NO_ADDRESS_COMMAND, NULL, 0, status_value, 1)) {
// store received values in status_value
tr_debug("Reading Status Register Success: value = 0x%x", (int)status_value[0]);
} else {
tr_error("Reading Status Register failed");
status = -1;
}
if (0 == status) {
//Send Reset Enable
if (SPIF_BD_ERROR_OK == _spi_send_general_command(SPIF_RSTEN, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0)) {
// store received values in status_value
tr_debug("Sending RSTEN Success");
} else {
tr_error("Sending RSTEN failed");
status = -1;
}
if (0 == status) {
//Send Reset
if (SPIF_BD_ERROR_OK == _spi_send_general_command(SPIF_RST, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0)) {
// store received values in status_value
tr_debug("Sending RST Success");
} else {
tr_error("Sending RST failed");
status = -1;
}
if (false == _is_mem_ready()) {
tr_error("Device not ready, write failed");
status = -1;
}
}
}
return status;
}
bool SPIFBlockDevice::_is_mem_ready()
{
// Check Status Register Busy Bit to Verify the Device isn't Busy
char status_value[2];
int retries = 0;
bool mem_ready = true;
do {
rtos::ThisThread::sleep_for(1);
retries++;
//Read the Status Register from device
if (SPIF_BD_ERROR_OK != _spi_send_general_command(SPIF_RDSR, SPI_NO_ADDRESS_COMMAND, NULL, 0, status_value,
1)) { // store received values in status_value
tr_error("Reading Status Register failed");
}
} while ((status_value[0] & SPIF_STATUS_BIT_WIP) != 0 && retries < IS_MEM_READY_MAX_RETRIES);
if ((status_value[0] & SPIF_STATUS_BIT_WIP) != 0) {
tr_error("_is_mem_ready FALSE");
mem_ready = false;
}
return mem_ready;
}
int SPIFBlockDevice::_set_write_enable()
{
// Check Status Register Busy Bit to Verify the Device isn't Busy
char status_value[2];
int status = -1;
do {
if (SPIF_BD_ERROR_OK != _spi_send_general_command(SPIF_WREN, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0)) {
tr_error("Sending WREN command FAILED");
break;
}
if (false == _is_mem_ready()) {
tr_error("Device not ready, write failed");
break;
}
memset(status_value, 0, 2);
if (SPIF_BD_ERROR_OK != _spi_send_general_command(SPIF_RDSR, SPI_NO_ADDRESS_COMMAND, NULL, 0, status_value,
1)) { // store received values in status_value
tr_error("Reading Status Register failed");
break;
}
if ((status_value[0] & SPIF_STATUS_BIT_WEL) == 0) {
tr_error("_set_write_enable failed");
break;
}
status = 0;
} while (false);
return status;
}