mirror of https://github.com/ARMmbed/mbed-os.git
253 lines
8.2 KiB
C++
253 lines
8.2 KiB
C++
/*
|
|
* Copyright (c) 2006-2019, ARM Limited, All Rights Reserved
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "platform/mbed_power_mgmt.h"
|
|
#include "platform/mbed_os_timer.h"
|
|
#include "platform/CriticalSectionLock.h"
|
|
#include "platform/SysTimer.h"
|
|
#include "us_ticker_api.h"
|
|
#include "lp_ticker_api.h"
|
|
#include "mbed_critical.h"
|
|
#include "mbed_assert.h"
|
|
#include <new>
|
|
|
|
/* This provides the marshalling point for a system global SysTimer, which
|
|
* is used to provide:
|
|
* - timed sleeps (for default idle hook in RTOS tickless mode, or non-RTOS sleeps)
|
|
* - regular ticks for RTOS
|
|
* - absolute system timing (directly for non-RTOS, or indirectly via RTOS tick count)
|
|
*/
|
|
|
|
namespace mbed {
|
|
namespace internal {
|
|
|
|
OsTimer *os_timer;
|
|
|
|
namespace {
|
|
uint64_t os_timer_data[(sizeof(OsTimer) + 7) / 8];
|
|
}
|
|
|
|
OsTimer *init_os_timer()
|
|
{
|
|
// Do not use SingletonPtr since this relies on the RTOS.
|
|
// Locking not required as it will be first called during
|
|
// OS init, or else we're a non-RTOS single-threaded setup.
|
|
if (!os_timer) {
|
|
#if MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER && DEVICE_USTICKER
|
|
os_timer = new (os_timer_data) OsTimer(get_us_ticker_data());
|
|
#elif !MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER && DEVICE_LPTICKER
|
|
os_timer = new (os_timer_data) OsTimer(get_lp_ticker_data());
|
|
#else
|
|
MBED_ASSERT("OS timer not available - check MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER" && false);
|
|
return NULL;
|
|
#endif
|
|
//os_timer->setup_irq();
|
|
}
|
|
|
|
return os_timer;
|
|
}
|
|
|
|
/* These traits classes are designed to permit chunks of code to be
|
|
* omitted - in particular eliminating timers. However, we don't want
|
|
* to cause template bloat, so don't have too many traits variants.
|
|
*/
|
|
|
|
/* Optionally timed operation, with optional predicate */
|
|
struct timed_predicate_op {
|
|
timed_predicate_op(uint64_t t) : wake_time(t), orig_predicate(NULL), orig_handle(NULL)
|
|
{
|
|
init_os_timer();
|
|
}
|
|
|
|
timed_predicate_op(uint64_t t, bool (*wake_predicate)(void *), void *wake_predicate_handle) : wake_time(t), orig_predicate(wake_predicate), orig_handle(wake_predicate_handle)
|
|
{
|
|
init_os_timer();
|
|
}
|
|
|
|
~timed_predicate_op()
|
|
{
|
|
// Make sure wake timer is cancelled. (It may or may not be, depending on
|
|
// why we woke).
|
|
os_timer->cancel_wake();
|
|
}
|
|
|
|
bool wake_condition() const
|
|
{
|
|
return (orig_predicate && orig_predicate(orig_handle)) || os_timer->wake_time_passed();
|
|
}
|
|
|
|
void sleep_prepare()
|
|
{
|
|
if (wake_time != (uint64_t) -1) {
|
|
os_timer->set_wake_time(wake_time);
|
|
}
|
|
}
|
|
|
|
bool sleep_prepared()
|
|
{
|
|
return wake_time == (uint64_t) -1 || os_timer->wake_time_set();
|
|
}
|
|
|
|
private:
|
|
uint64_t wake_time;
|
|
bool (*orig_predicate)(void *);
|
|
void *orig_handle;
|
|
};
|
|
|
|
/* Untimed operation with predicate */
|
|
struct untimed_op {
|
|
untimed_op(bool (*wake_predicate)(void *), void *wake_predicate_handle) : orig_predicate(wake_predicate), orig_handle(wake_predicate_handle)
|
|
{
|
|
}
|
|
|
|
bool wake_condition() const
|
|
{
|
|
return orig_predicate(orig_handle);
|
|
}
|
|
|
|
void sleep_prepare()
|
|
{
|
|
}
|
|
|
|
bool sleep_prepared()
|
|
{
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
bool (*orig_predicate)(void *);
|
|
void *orig_handle;
|
|
};
|
|
|
|
/* We require that this is called from thread context, outside a critical section,
|
|
* and the kernel already suspended if an RTOS, meaning we don't have to worry
|
|
* about any potential threading issues.
|
|
*
|
|
* The wake predicate will be called from both outside and inside a critical
|
|
* section, so appropriate atomic care must be taken.
|
|
*/
|
|
template <class OpT>
|
|
void do_sleep_operation(OpT &op)
|
|
{
|
|
// We assume the ticker is not already in use - without RTOS, it
|
|
// is never used, with RTOS, it will have been disabled with OS_Tick_Disable
|
|
while (!op.wake_condition()) {
|
|
// Set (or re-set) the wake time - outside a critical section, as
|
|
// it could take long enough to cause UART data loss on some platforms.
|
|
op.sleep_prepare();
|
|
|
|
// If no target sleep function, nothing else to do - just keep
|
|
// rechecking the wake condition.
|
|
#if DEVICE_SLEEP
|
|
// Now we need to enter the critical section for the race-free sleep
|
|
{
|
|
CriticalSectionLock lock;
|
|
|
|
// Recheck wake conditions before starting sleep, avoiding race
|
|
if (op.wake_condition()) {
|
|
break;
|
|
}
|
|
|
|
// It's possible that an intermediate wake interrupt occurred
|
|
// between "set_wake_time" and the critical lock - only sleep
|
|
// if we see that the timer is armed or we don't need it. Otherwise,
|
|
// we go round to set the timer again.
|
|
if (op.sleep_prepared()) {
|
|
// Enter HAL sleep (normal or deep)
|
|
sleep();
|
|
}
|
|
}
|
|
|
|
// Ensure interrupts get a chance to fire, which allows new result from
|
|
// wake_predicate() and wake_time_passed()
|
|
__ISB();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* We require that this is called from thread context, outside a critical section,
|
|
* and the kernel already suspended if an RTOS, meaning we don't have to worry
|
|
* about any potential threading issues.
|
|
*
|
|
* The wake predicate will be called from both outside and inside a critical
|
|
* section, so appropriate atomic care must be taken.
|
|
*/
|
|
uint64_t do_timed_sleep_absolute(uint64_t wake_time, bool (*wake_predicate)(void *), void *wake_predicate_handle)
|
|
{
|
|
{
|
|
timed_predicate_op op(wake_time, wake_predicate, wake_predicate_handle);
|
|
do_sleep_operation(op);
|
|
}
|
|
|
|
return os_timer->update_and_get_tick();
|
|
}
|
|
|
|
|
|
#if MBED_CONF_RTOS_PRESENT
|
|
/* The 32-bit limit is part of the API - we will always wake within 2^32 ticks */
|
|
/* This version is tuned for RTOS use, where the RTOS needs to know the time spent sleeping */
|
|
uint32_t do_timed_sleep_relative(uint32_t wake_delay, bool (*wake_predicate)(void *), void *wake_predicate_handle)
|
|
{
|
|
uint64_t sleep_start = init_os_timer()->get_tick();
|
|
// When running with RTOS, the requested delay will be based on the kernel's tick count.
|
|
// If it missed a tick as entering idle, we should reflect that by moving the
|
|
// start time back to reflect its current idea of time.
|
|
// Example: OS tick count = 100, our tick count = 101, requested delay = 50
|
|
// We need to schedule wake for tick 150, report 50 ticks back to our caller, and
|
|
// clear the unacknowledged tick count.
|
|
sleep_start -= os_timer->unacknowledged_ticks();
|
|
|
|
uint64_t sleep_finish = do_timed_sleep_absolute(sleep_start + wake_delay, wake_predicate, wake_predicate_handle);
|
|
|
|
return static_cast<uint32_t>(sleep_finish - sleep_start);
|
|
}
|
|
|
|
#else
|
|
|
|
void do_untimed_sleep(bool (*wake_predicate)(void *), void *wake_predicate_handle)
|
|
{
|
|
untimed_op op(wake_predicate, wake_predicate_handle);
|
|
|
|
do_sleep_operation(op);
|
|
}
|
|
|
|
/* (uint32_t)-1 delay is treated as "wait forever" */
|
|
/* This version is tuned for non-RTOS use, where we don't need to return sleep time, and waiting forever is possible */
|
|
void do_timed_sleep_relative_or_forever(uint32_t wake_delay, bool (*wake_predicate)(void *), void *wake_predicate_handle)
|
|
{
|
|
// Special-case 0 delay, to save multiple callers having to do it. Just call the predicate once.
|
|
if (wake_delay == 0) {
|
|
wake_predicate(wake_predicate_handle);
|
|
return;
|
|
}
|
|
|
|
uint64_t wake_time;
|
|
if (wake_delay == (uint32_t) -1) {
|
|
wake_time = (uint64_t) -1;
|
|
} else {
|
|
wake_time = init_os_timer()->update_and_get_tick() + wake_delay;
|
|
}
|
|
/* Always use timed_predicate_op here to save pulling in two templates */
|
|
timed_predicate_op op(wake_time, wake_predicate, wake_predicate_handle);
|
|
do_sleep_operation(op);
|
|
}
|
|
|
|
#endif
|
|
|
|
} // namespace internal
|
|
} // namespace mbed
|