mbed-os/platform/mbed_os_timer.cpp

253 lines
8.2 KiB
C++

/*
* Copyright (c) 2006-2019, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "platform/mbed_power_mgmt.h"
#include "platform/mbed_os_timer.h"
#include "platform/CriticalSectionLock.h"
#include "platform/SysTimer.h"
#include "us_ticker_api.h"
#include "lp_ticker_api.h"
#include "mbed_critical.h"
#include "mbed_assert.h"
#include <new>
/* This provides the marshalling point for a system global SysTimer, which
* is used to provide:
* - timed sleeps (for default idle hook in RTOS tickless mode, or non-RTOS sleeps)
* - regular ticks for RTOS
* - absolute system timing (directly for non-RTOS, or indirectly via RTOS tick count)
*/
namespace mbed {
namespace internal {
OsTimer *os_timer;
namespace {
uint64_t os_timer_data[(sizeof(OsTimer) + 7) / 8];
}
OsTimer *init_os_timer()
{
// Do not use SingletonPtr since this relies on the RTOS.
// Locking not required as it will be first called during
// OS init, or else we're a non-RTOS single-threaded setup.
if (!os_timer) {
#if MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER && DEVICE_USTICKER
os_timer = new (os_timer_data) OsTimer(get_us_ticker_data());
#elif !MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER && DEVICE_LPTICKER
os_timer = new (os_timer_data) OsTimer(get_lp_ticker_data());
#else
MBED_ASSERT("OS timer not available - check MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER" && false);
return NULL;
#endif
//os_timer->setup_irq();
}
return os_timer;
}
/* These traits classes are designed to permit chunks of code to be
* omitted - in particular eliminating timers. However, we don't want
* to cause template bloat, so don't have too many traits variants.
*/
/* Optionally timed operation, with optional predicate */
struct timed_predicate_op {
timed_predicate_op(uint64_t t) : wake_time(t), orig_predicate(NULL), orig_handle(NULL)
{
init_os_timer();
}
timed_predicate_op(uint64_t t, bool (*wake_predicate)(void *), void *wake_predicate_handle) : wake_time(t), orig_predicate(wake_predicate), orig_handle(wake_predicate_handle)
{
init_os_timer();
}
~timed_predicate_op()
{
// Make sure wake timer is cancelled. (It may or may not be, depending on
// why we woke).
os_timer->cancel_wake();
}
bool wake_condition() const
{
return (orig_predicate && orig_predicate(orig_handle)) || os_timer->wake_time_passed();
}
void sleep_prepare()
{
if (wake_time != (uint64_t) -1) {
os_timer->set_wake_time(wake_time);
}
}
bool sleep_prepared()
{
return wake_time == (uint64_t) -1 || os_timer->wake_time_set();
}
private:
uint64_t wake_time;
bool (*orig_predicate)(void *);
void *orig_handle;
};
/* Untimed operation with predicate */
struct untimed_op {
untimed_op(bool (*wake_predicate)(void *), void *wake_predicate_handle) : orig_predicate(wake_predicate), orig_handle(wake_predicate_handle)
{
}
bool wake_condition() const
{
return orig_predicate(orig_handle);
}
void sleep_prepare()
{
}
bool sleep_prepared()
{
return true;
}
private:
bool (*orig_predicate)(void *);
void *orig_handle;
};
/* We require that this is called from thread context, outside a critical section,
* and the kernel already suspended if an RTOS, meaning we don't have to worry
* about any potential threading issues.
*
* The wake predicate will be called from both outside and inside a critical
* section, so appropriate atomic care must be taken.
*/
template <class OpT>
void do_sleep_operation(OpT &op)
{
// We assume the ticker is not already in use - without RTOS, it
// is never used, with RTOS, it will have been disabled with OS_Tick_Disable
while (!op.wake_condition()) {
// Set (or re-set) the wake time - outside a critical section, as
// it could take long enough to cause UART data loss on some platforms.
op.sleep_prepare();
// If no target sleep function, nothing else to do - just keep
// rechecking the wake condition.
#if DEVICE_SLEEP
// Now we need to enter the critical section for the race-free sleep
{
CriticalSectionLock lock;
// Recheck wake conditions before starting sleep, avoiding race
if (op.wake_condition()) {
break;
}
// It's possible that an intermediate wake interrupt occurred
// between "set_wake_time" and the critical lock - only sleep
// if we see that the timer is armed or we don't need it. Otherwise,
// we go round to set the timer again.
if (op.sleep_prepared()) {
// Enter HAL sleep (normal or deep)
sleep();
}
}
// Ensure interrupts get a chance to fire, which allows new result from
// wake_predicate() and wake_time_passed()
__ISB();
#endif
}
}
/* We require that this is called from thread context, outside a critical section,
* and the kernel already suspended if an RTOS, meaning we don't have to worry
* about any potential threading issues.
*
* The wake predicate will be called from both outside and inside a critical
* section, so appropriate atomic care must be taken.
*/
uint64_t do_timed_sleep_absolute(uint64_t wake_time, bool (*wake_predicate)(void *), void *wake_predicate_handle)
{
{
timed_predicate_op op(wake_time, wake_predicate, wake_predicate_handle);
do_sleep_operation(op);
}
return os_timer->update_and_get_tick();
}
#if MBED_CONF_RTOS_PRESENT
/* The 32-bit limit is part of the API - we will always wake within 2^32 ticks */
/* This version is tuned for RTOS use, where the RTOS needs to know the time spent sleeping */
uint32_t do_timed_sleep_relative(uint32_t wake_delay, bool (*wake_predicate)(void *), void *wake_predicate_handle)
{
uint64_t sleep_start = init_os_timer()->get_tick();
// When running with RTOS, the requested delay will be based on the kernel's tick count.
// If it missed a tick as entering idle, we should reflect that by moving the
// start time back to reflect its current idea of time.
// Example: OS tick count = 100, our tick count = 101, requested delay = 50
// We need to schedule wake for tick 150, report 50 ticks back to our caller, and
// clear the unacknowledged tick count.
sleep_start -= os_timer->unacknowledged_ticks();
uint64_t sleep_finish = do_timed_sleep_absolute(sleep_start + wake_delay, wake_predicate, wake_predicate_handle);
return static_cast<uint32_t>(sleep_finish - sleep_start);
}
#else
void do_untimed_sleep(bool (*wake_predicate)(void *), void *wake_predicate_handle)
{
untimed_op op(wake_predicate, wake_predicate_handle);
do_sleep_operation(op);
}
/* (uint32_t)-1 delay is treated as "wait forever" */
/* This version is tuned for non-RTOS use, where we don't need to return sleep time, and waiting forever is possible */
void do_timed_sleep_relative_or_forever(uint32_t wake_delay, bool (*wake_predicate)(void *), void *wake_predicate_handle)
{
// Special-case 0 delay, to save multiple callers having to do it. Just call the predicate once.
if (wake_delay == 0) {
wake_predicate(wake_predicate_handle);
return;
}
uint64_t wake_time;
if (wake_delay == (uint32_t) -1) {
wake_time = (uint64_t) -1;
} else {
wake_time = init_os_timer()->update_and_get_tick() + wake_delay;
}
/* Always use timed_predicate_op here to save pulling in two templates */
timed_predicate_op op(wake_time, wake_predicate, wake_predicate_handle);
do_sleep_operation(op);
}
#endif
} // namespace internal
} // namespace mbed