mbed-os/targets/TARGET_RENESAS/TARGET_RZ_A1XX/spi_api.c

579 lines
16 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include <math.h>
#include "spi_api.h"
#include "cmsis.h"
#include "PeripheralPins.h"
#include "mbed_error.h"
#include "RZ_A1_Init.h"
#include "mbed_drv_cfg.h"
static const struct st_rspi *RSPI[] = RSPI_ADDRESS_LIST;
static inline void spi_disable(spi_t *obj);
static inline void spi_enable(spi_t *obj);
static inline int spi_readable(spi_t *obj);
static inline void spi_write(spi_t *obj, int value);
static inline int spi_read(spi_t *obj);
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
// determine the SPI to use
volatile uint8_t dummy;
uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
uint32_t spi = pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)spi != NC);
obj->spi.spi = (struct st_rspi *)RSPI[spi];
obj->spi.index = spi;
// enable power and clocking
CPGSTBCR10 &= ~(0x80 >> spi);
dummy = CPGSTBCR10;
(void)dummy;
obj->spi.spi->SPCR = 0x00; // CTRL to 0
obj->spi.spi->SPSCR = 0x00; // no sequential operation
obj->spi.spi->SSLP = 0x00; // SSL 'L' active
obj->spi.spi->SPDCR = 0x20; // byte access
obj->spi.spi->SPCKD = 0x00; // SSL -> enable CLK delay : 1RSPCK
obj->spi.spi->SSLND = 0x00; // CLK end -> SSL neg delay : 1RSPCK
obj->spi.spi->SPND = 0x00; // delay between CMD : 1RSPCK + 2P1CLK
obj->spi.spi->SPPCR = 0x20; // MOSI Idle fixed value equals 0
obj->spi.spi->SPBFCR = 0xf0; // and set trigger count: read 1, write 1
obj->spi.spi->SPBFCR = 0x30; // and reset buffer
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if ((int)ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
}
void spi_free(spi_t *obj) {}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
int DSS; // DSS (data select size)
int polarity = (mode & 0x2) ? 1 : 0;
int phase = (mode & 0x1) ? 1 : 0;
uint16_t tmp = 0;
uint16_t mask = 0xf03;
uint16_t wk_spcmd0;
uint8_t splw;
switch (mode) {
case 0:
case 1:
case 2:
case 3:
// Do Nothing
break;
default:
error("SPI format error");
return;
}
switch (bits) {
case 8:
DSS = 0x7;
splw = 0x20;
break;
case 16:
DSS = 0xf;
splw = 0x40;
break;
case 32:
DSS = 0x2;
splw = 0x60;
break;
default:
error("SPI module don't support other than 8/16/32bits");
return;
}
tmp |= phase;
tmp |= (polarity << 1);
tmp |= (DSS << 8);
obj->spi.bits = bits;
spi_disable(obj);
wk_spcmd0 = obj->spi.spi->SPCMD0;
wk_spcmd0 &= ~mask;
wk_spcmd0 |= (mask & tmp);
obj->spi.spi->SPCMD0 = wk_spcmd0;
obj->spi.spi->SPDCR = splw;
if (slave) {
obj->spi.spi->SPCR &=~(1 << 3); // MSTR to 0
} else {
obj->spi.spi->SPCR |= (1 << 3); // MSTR to 1
}
spi_enable(obj);
}
void spi_frequency(spi_t *obj, int hz) {
uint32_t pclk_base;
uint32_t div;
uint32_t brdv = 0;
uint32_t hz_max;
uint32_t hz_min;
uint16_t mask = 0x000c;
uint16_t wk_spcmd0;
/* set PCLK */
if (RZ_A1_IsClockMode0() == false) {
pclk_base = CM1_RENESAS_RZ_A1_P1_CLK;
} else {
pclk_base = CM0_RENESAS_RZ_A1_P1_CLK;
}
hz_min = pclk_base / 2 / 256 / 8;
hz_max = pclk_base / 2;
if ((uint32_t)hz < hz_min) {
hz = hz_min;
}
if ((uint32_t)hz > hz_max) {
hz = hz_max;
}
div = (pclk_base / hz / 2);
while (div > 256) {
div >>= 1;
brdv++;
}
div -= 1;
brdv = (brdv << 2);
spi_disable(obj);
obj->spi.spi->SPBR = div;
wk_spcmd0 = obj->spi.spi->SPCMD0;
wk_spcmd0 &= ~mask;
wk_spcmd0 |= (mask & brdv);
obj->spi.spi->SPCMD0 = wk_spcmd0;
spi_enable(obj);
}
static inline void spi_disable(spi_t *obj) {
obj->spi.spi->SPCR &= ~(1 << 6); // SPE to 0
}
static inline void spi_enable(spi_t *obj) {
obj->spi.spi->SPCR |= (1 << 6); // SPE to 1
}
static inline int spi_readable(spi_t *obj) {
return obj->spi.spi->SPSR & (1 << 7); // SPRF
}
static inline int spi_tend(spi_t *obj) {
return obj->spi.spi->SPSR & (1 << 6); // TEND
}
static inline void spi_write(spi_t *obj, int value) {
if (obj->spi.bits == 8) {
obj->spi.spi->SPDR.UINT8[0] = (uint8_t)value;
} else if (obj->spi.bits == 16) {
obj->spi.spi->SPDR.UINT16[0] = (uint16_t)value;
} else {
obj->spi.spi->SPDR.UINT32 = (uint32_t)value;
}
}
static inline int spi_read(spi_t *obj) {
int read_data;
if (obj->spi.bits == 8) {
read_data = obj->spi.spi->SPDR.UINT8[0];
} else if (obj->spi.bits == 16) {
read_data = obj->spi.spi->SPDR.UINT16[0];
} else {
read_data = obj->spi.spi->SPDR.UINT32;
}
return read_data;
}
int spi_master_write(spi_t *obj, int value) {
spi_write(obj, value);
while(!spi_tend(obj));
return spi_read(obj);
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill) {
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
int spi_slave_receive(spi_t *obj) {
return (spi_readable(obj) && !spi_busy(obj)) ? (1) : (0);
}
int spi_slave_read(spi_t *obj) {
return spi_read(obj);
}
void spi_slave_write(spi_t *obj, int value) {
spi_write(obj, value);
}
int spi_busy(spi_t *obj) {
return 0;
}
const PinMap *spi_master_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_master_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_master_clk_pinmap()
{
return PinMap_SPI_SCLK;
}
const PinMap *spi_master_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
const PinMap *spi_slave_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_slave_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_slave_clk_pinmap()
{
return PinMap_SPI_SCLK;
}
const PinMap *spi_slave_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
#if DEVICE_SPI_ASYNCH
#define SPI_NUM 5
#define IRQ_NUM 2
static void spi_irqs_set(spi_t *obj, uint32_t enable);
static void spi_async_write(spi_t *obj);
static void spi_async_read(spi_t *obj);
static void spi0_rx_irq(void);
static void spi0_er_irq(void);
static void spi1_rx_irq(void);
static void spi1_er_irq(void);
static void spi2_rx_irq(void);
static void spi2_er_irq(void);
static void spi3_rx_irq(void);
static void spi3_er_irq(void);
static void spi4_rx_irq(void);
static void spi4_er_irq(void);
static const IRQn_Type irq_set_tbl[SPI_NUM][IRQ_NUM] = {
{RSPISPRI0_IRQn, RSPISPEI0_IRQn},
{RSPISPRI1_IRQn, RSPISPEI1_IRQn},
{RSPISPRI2_IRQn, RSPISPEI2_IRQn},
{RSPISPRI3_IRQn, RSPISPEI3_IRQn},
{RSPISPRI4_IRQn, RSPISPEI4_IRQn},
};
static const IRQHandler hander_set_tbl[SPI_NUM][IRQ_NUM] = {
{spi0_rx_irq, spi0_er_irq},
{spi1_rx_irq, spi1_er_irq},
{spi2_rx_irq, spi2_er_irq},
{spi3_rx_irq, spi3_er_irq},
{spi4_rx_irq, spi4_er_irq},
};
struct spi_global_data_s {
spi_t *async_obj;
uint32_t async_callback, event, wanted_events;
};
static struct spi_global_data_s spi_data[SPI_NUM];
static void spi_rx_irq(IRQn_Type irq_num, uint32_t index)
{
spi_t *obj = spi_data[index].async_obj;
if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) {
spi_async_read(obj);
} else {
if (obj->rx_buff.buffer && obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) {
spi_data[obj->spi.index].event = SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
if (spi_data[obj->spi.index].wanted_events & SPI_EVENT_COMPLETE) {
spi_data[obj->spi.index].event |= SPI_EVENT_COMPLETE;
}
spi_irqs_set(obj, 0);
spi_data[obj->spi.index].async_obj = NULL;
((void (*)())spi_data[obj->spi.index].async_callback)();
return;
}
spi_read(obj);
}
if (obj->tx_buff.buffer) {
if (obj->tx_buff.pos == obj->tx_buff.length) {
spi_data[obj->spi.index].event = SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
if (spi_data[obj->spi.index].wanted_events & SPI_EVENT_COMPLETE) {
spi_data[obj->spi.index].event |= SPI_EVENT_COMPLETE;
}
spi_irqs_set(obj, 0);
spi_data[obj->spi.index].async_obj = NULL;
((void (*)())spi_data[obj->spi.index].async_callback)();
} else {
spi_async_write(obj);
}
} else {
if (obj->rx_buff.pos == obj->rx_buff.length) {
spi_data[obj->spi.index].event = SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
if (spi_data[obj->spi.index].wanted_events & SPI_EVENT_COMPLETE) {
spi_data[obj->spi.index].event |= SPI_EVENT_COMPLETE;
}
spi_irqs_set(obj, 0);
spi_data[obj->spi.index].async_obj = NULL;
((void (*)())spi_data[obj->spi.index].async_callback)();
} else {
spi_async_write(obj);
}
}
}
static void spi_err_irq(IRQn_Type irq_num, uint32_t index)
{
spi_t *obj = spi_data[index].async_obj;
spi_abort_asynch(obj);
spi_data[index].event = SPI_EVENT_ERROR;
if (spi_data[index].wanted_events & SPI_EVENT_ERROR) {
((void (*)())spi_data[index].async_callback)();
}
}
static void spi0_rx_irq(void) {
spi_rx_irq(RSPISPRI0_IRQn, 0);
}
static void spi0_er_irq(void) {
spi_err_irq(RSPISPEI0_IRQn, 0);
}
static void spi1_rx_irq(void) {
spi_rx_irq(RSPISPRI1_IRQn, 1);
}
static void spi1_er_irq(void) {
spi_err_irq(RSPISPEI1_IRQn, 1);
}
static void spi2_rx_irq(void) {
spi_rx_irq(RSPISPRI2_IRQn, 2);
}
static void spi2_er_irq(void) {
spi_err_irq(RSPISPEI2_IRQn, 2);
}
static void spi3_rx_irq(void) {
spi_rx_irq(RSPISPRI3_IRQn, 3);
}
static void spi3_er_irq(void) {
spi_err_irq(RSPISPEI3_IRQn, 3);
}
static void spi4_rx_irq(void) {
spi_rx_irq(RSPISPRI4_IRQn, 4);
}
static void spi4_er_irq(void) {
spi_err_irq(RSPISPEI4_IRQn, 4);
}
static void spi_irqs_set(spi_t *obj, uint32_t enable)
{
int i;
const IRQn_Type *irqTable = irq_set_tbl[obj->spi.index];
const IRQHandler *handlerTable = hander_set_tbl[obj->spi.index];
for (i = 0; i < IRQ_NUM; ++i) {
if (enable) {
InterruptHandlerRegister(irqTable[i], handlerTable[i]);
GIC_SetPriority(irqTable[i], 5);
GIC_SetConfiguration(irqTable[i], 1);
GIC_EnableIRQ(irqTable[i]);
} else {
GIC_DisableIRQ(irqTable[i]);
}
}
if (enable) {
obj->spi.spi->SPCR |= (1 << 4) | (1 << 7);
} else {
obj->spi.spi->SPCR &= ~((1 << 4) | (1 << 7));
}
}
static void spi_async_write(spi_t *obj)
{
uint8_t **width8;
uint16_t **width16;
uint32_t **width32;
if (obj->tx_buff.buffer) {
switch (obj->tx_buff.width) {
case 8:
width8 = (uint8_t **)&obj->tx_buff.buffer;
spi_write(obj, **width8);
++*width8;
obj->tx_buff.pos += sizeof(uint8_t);
break;
case 16:
width16 = (uint16_t **)&obj->tx_buff.buffer;
spi_write(obj, **width16);
++*width16;
obj->tx_buff.pos += sizeof(uint16_t);
break;
case 32:
width32 = (uint32_t **)&obj->tx_buff.buffer;
spi_write(obj, **width32);
++*width32;
obj->tx_buff.pos += sizeof(uint32_t);
break;
default:
MBED_ASSERT(0);
break;
}
} else {
spi_write(obj, SPI_FILL_WORD);
}
}
static void spi_async_read(spi_t *obj)
{
uint8_t **width8;
uint16_t **width16;
uint32_t **width32;
switch (obj->rx_buff.width) {
case 8:
width8 = (uint8_t **)&obj->rx_buff.buffer;
**width8 = spi_read(obj);
++*width8;
obj->rx_buff.pos += sizeof(uint8_t);
break;
case 16:
width16 = (uint16_t **)&obj->rx_buff.buffer;
**width16 = spi_read(obj);
++*width16;
obj->rx_buff.pos += sizeof(uint16_t);
break;
case 32:
width32 = (uint32_t **)&obj->rx_buff.buffer;
**width32 = spi_read(obj);
++*width32;
obj->rx_buff.pos += sizeof(uint32_t);
break;
default:
MBED_ASSERT(0);
break;
}
}
/******************************************************************************
* ASYNCHRONOUS HAL
******************************************************************************/
void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
int i;
MBED_ASSERT(obj);
MBED_ASSERT(tx || rx);
MBED_ASSERT(tx && ! rx ? tx_length : 1);
MBED_ASSERT(rx && ! tx ? rx_length : 1);
MBED_ASSERT(obj->spi.spi->SPCR & (1 << 3)); /* Slave mode */
MBED_ASSERT(bit_width == 8 || bit_width == 16 || bit_width == 32);
if (tx_length) {
obj->tx_buff.buffer = (void *)tx;
} else {
obj->tx_buff.buffer = NULL;
}
obj->tx_buff.length = tx_length * bit_width / 8;
obj->tx_buff.pos = 0;
obj->tx_buff.width = bit_width;
if (rx_length) {
obj->rx_buff.buffer = rx;
} else {
obj->rx_buff.buffer = NULL;
}
obj->rx_buff.length = rx_length * bit_width / 8;
obj->rx_buff.pos = 0;
obj->rx_buff.width = bit_width;
for (i = 0; i < (int)obj->rx_buff.length; i++) {
((uint8_t *)obj->rx_buff.buffer)[i] = SPI_FILL_WORD;
}
spi_data[obj->spi.index].async_callback = handler;
spi_data[obj->spi.index].async_obj = obj;
spi_data[obj->spi.index].event = 0;
spi_data[obj->spi.index].wanted_events = event;
spi_irqs_set(obj, 1);
spi_async_write(obj);
}
uint32_t spi_irq_handler_asynch(spi_t *obj)
{
return spi_data[obj->spi.index].event;
}
uint8_t spi_active(spi_t *obj)
{
return spi_data[obj->spi.index].async_obj != NULL;
}
void spi_abort_asynch(spi_t *obj)
{
spi_disable(obj);
spi_irqs_set(obj, 0);
spi_data[obj->spi.index].async_obj = NULL;
spi_enable(obj);
}
#endif