mbed-os/targets/TARGET_RENESAS/TARGET_RZ_A1XX/ethernet_api.c

826 lines
28 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include "ethernet_api.h"
#include "cmsis.h"
#include "mbed_interface.h"
#include "mbed_toolchain.h"
#include "mbed_error.h"
#include "iodefine.h"
#include "ethernetext_api.h"
#if DEVICE_ETHERNET
/* Descriptor info */
#define NUM_OF_TX_DESCRIPTOR (16)
#define NUM_OF_RX_DESCRIPTOR (16)
#define SIZE_OF_BUFFER (1600) /* Must be an integral multiple of 32 */
#define MAX_SEND_SIZE (1514)
/* Ethernet Descriptor Value Define */
#define TD0_TFP_TOP_BOTTOM (0x30000000)
#define TD0_TACT (0x80000000)
#define TD0_TDLE (0x40000000)
#define RD0_RACT (0x80000000)
#define RD0_RDLE (0x40000000)
#define RD0_RFE (0x08000000)
#define RD0_RCSE (0x04000000)
#define RD0_RFS (0x03FF0000)
#define RD0_RCS (0x0000FFFF)
#define RD0_RFS_RFOF (0x02000000)
#define RD0_RFS_RUAF (0x00400000)
#define RD0_RFS_RRF (0x00100000)
#define RD0_RFS_RTLF (0x00080000)
#define RD0_RFS_RTSF (0x00040000)
#define RD0_RFS_PRE (0x00020000)
#define RD0_RFS_CERF (0x00010000)
#define RD0_RFS_ERROR (RD0_RFS_RFOF | RD0_RFS_RUAF | RD0_RFS_RRF | RD0_RFS_RTLF | \
RD0_RFS_RTSF | RD0_RFS_PRE | RD0_RFS_CERF)
#define RD1_RDL_MSK (0x0000FFFF)
/* PHY Register */
#define BASIC_MODE_CONTROL_REG (0)
#define BASIC_MODE_STATUS_REG (1)
#define PHY_IDENTIFIER1_REG (2)
#define PHY_IDENTIFIER2_REG (3)
#define PHY_SP_CTL_STS_REG (31)
/* MII management interface access */
#define PHY_ADDR (0) /* Confirm the pin connection of the PHY-LSI */
#define PHY_ST (1)
#define PHY_WRITE (1)
#define PHY_READ (2)
#define MDC_WAIT (6) /* 400ns/4 */
#define BASIC_STS_MSK_LINK (0x0004) /* Link Status */
#define BASIC_STS_MSK_AUTO_CMP (0x0020) /* Auto-Negotiate Complete */
#define M_PHY_ID (0xFFFFFFF0)
#define PHY_ID_LAN8710A (0x0007C0F0)
/* ETHERPIR0 */
#define PIR0_MDI (0x00000008)
#define PIR0_MDO (0x00000004)
#define PIR0_MMD (0x00000002)
#define PIR0_MDC (0x00000001)
#define PIR0_MDC_HIGH (0x00000001)
#define PIR0_MDC_LOW (0x00000000)
/* ETHEREDRRR0 */
#define EDRRR0_RR (0x00000001)
/* ETHEREDTRR0 */
#define EDTRR0_TR (0x00000003)
/* software wait */
#define LOOP_100us (6700) /* Loop counter for software wait 6666=100us/((1/400MHz)*6cyc) */
#define EDMAC_EESIPR_INI_RECV (0x0205001F) /* 0x02000000 : Detect reception suspended */
/* 0x00040000 : Detect frame reception */
/* 0x00010000 : Receive FIFO overflow */
/* 0x00000010 : Residual bit frame reception */
/* 0x00000008 : Long frame reception */
/* 0x00000004 : Short frame reception */
/* 0x00000002 : PHY-LSI reception error */
/* 0x00000001 : Receive frame CRC error */
#define EDMAC_EESIPR_INI_EtherC (0x00400000) /* 0x00400000 : E-MAC status register */
void ethernet_address(char *);
void ethernet_set_link(int, int);
/* Send descriptor */
typedef struct tag_edmac_send_desc {
uint32_t td0;
uint32_t td1;
uint8_t *td2;
uint32_t padding4;
} edmac_send_desc_t;
/* Receive descriptor */
typedef struct tag_edmac_recv_desc {
uint32_t rd0;
uint32_t rd1;
uint8_t *rd2;
uint32_t padding4;
} edmac_recv_desc_t;
/* memory */
/* The whole transmit/receive descriptors (must be allocated in 16-byte boundaries) */
/* Transmit/receive buffers (must be allocated in 16-byte boundaries) */
#if defined(__ICCARM__)
#pragma data_alignment=16
static uint8_t ethernet_nc_memory[(sizeof(edmac_send_desc_t) * NUM_OF_TX_DESCRIPTOR) +
(sizeof(edmac_recv_desc_t) * NUM_OF_RX_DESCRIPTOR) +
(NUM_OF_TX_DESCRIPTOR * SIZE_OF_BUFFER) +
(NUM_OF_RX_DESCRIPTOR * SIZE_OF_BUFFER)] //16 bytes aligned!
@ ".mirrorram";
#else
static uint8_t ethernet_nc_memory[(sizeof(edmac_send_desc_t) * NUM_OF_TX_DESCRIPTOR) +
(sizeof(edmac_recv_desc_t) * NUM_OF_RX_DESCRIPTOR) +
(NUM_OF_TX_DESCRIPTOR * SIZE_OF_BUFFER) +
(NUM_OF_RX_DESCRIPTOR * SIZE_OF_BUFFER)]
__attribute((section("NC_BSS"),aligned(16))); //16 bytes aligned!
#endif
static int32_t rx_read_offset; /* read offset */
static int32_t tx_wite_offset; /* write offset */
static uint32_t send_top_index;
static uint32_t recv_top_index;
static int32_t Interrupt_priority;
static edmac_send_desc_t *p_eth_desc_dsend = NULL;
static edmac_recv_desc_t *p_eth_desc_drecv = NULL;
static edmac_recv_desc_t *p_recv_end_desc = NULL;
static ethernetext_cb_fnc *p_recv_cb_fnc = NULL;
static char mac_addr[6] = {0x00, 0x02, 0xF7, 0xF0, 0x00, 0x00}; /* MAC Address */
static uint32_t phy_id = 0;
static uint32_t start_stop = 1; /* 0:stop 1:start */
static uint32_t tsu_ten_tmp = 0;
volatile struct st_ether_from_tsu_adrh0* ETHER_FROM_TSU_ADRH0_ARRAY[ ETHER_FROM_TSU_ADRH0_ARRAY_COUNT ] =
/* ->MISRA 11.3 */ /* ->SEC R2.7.1 */
ETHER_FROM_TSU_ADRH0_ARRAY_ADDRESS_LIST;
/* <-MISRA 11.3 */ /* <-SEC R2.7.1 */
/* function */
static void lan_reg_reset(void);
static void lan_desc_create(void);
static void lan_reg_set(int32_t link);
static uint16_t phy_reg_read(uint16_t reg_addr);
static void phy_reg_write(uint16_t reg_addr, uint16_t data);
static void mii_preamble(void);
static void mii_cmd(uint16_t reg_addr, uint32_t option);
static void mii_reg_read(uint16_t *data);
static void mii_reg_write(uint16_t data);
static void mii_z(void);
static void mii_write_1(void);
static void mii_write_0(void);
static void set_ether_pir(uint32_t set_data);
static void wait_100us(int32_t wait_cnt);
int ethernetext_init(ethernet_cfg_t *p_ethcfg) {
int32_t i;
uint16_t val;
CPGSTBCR7 &= ~(CPG_STBCR7_BIT_MSTP74); /* enable ETHER clock */
#if defined(TARGET_RZ_A1H)
/* P4_2(PHY Reset) */
GPIOP4 &= ~0x0004; /* Outputs low level */
GPIOPMC4 &= ~0x0004; /* Port mode */
GPIOPM4 &= ~0x0004; /* Output mode */
/* GPIO P1 P1_14(ET_COL) */
GPIOPMC1 |= 0x4000;
GPIOPFCAE1 &= ~0x4000;
GPIOPFCE1 |= 0x4000;
GPIOPFC1 |= 0x4000;
/* P3_0(ET_TXCLK), P3_3(ET_MDIO), P3_4(ET_RXCLK), P3_5(ET_RXER), P3_6(ET_RXDV) */
GPIOPMC3 |= 0x0079;
GPIOPFCAE3 &= ~0x0079;
GPIOPFCE3 &= ~0x0079;
GPIOPFC3 |= 0x0079;
GPIOPIPC3 |= 0x0079;
/* P5_9(ET_MDC) */
GPIOPMC5 |= 0x0200;
GPIOPFCAE5 &= ~0x0200;
GPIOPFCE5 &= ~0x0200;
GPIOPFC5 |= 0x0200;
GPIOPIPC5 |= 0x0200;
/* P10_1(ET_TXER), P10_2(ET_TXEN), P10_3(ET_CRS), P10_4(ET_TXD0), P10_5(ET_TXD1) */
/* P10_6(ET_TXD2), P10_7(ET_TXD3), P10_8(ET_RXD0), P10_9(ET_RXD1), P10_10(ET_RXD2), P10_11(ET_RXD3) */
GPIOPMC10 |= 0x0FFE;
GPIOPFCAE10 &= ~0x0FFE;
GPIOPFCE10 |= 0x0FFE;
GPIOPFC10 |= 0x0FFE;
GPIOPIPC10 |= 0x0FFE;
/* Resets the E-MAC,E-DMAC */
lan_reg_reset();
/* PHY Reset */
GPIOP4 &= ~0x0004; /* P4_2 Outputs low level */
wait_100us(250); /* 25msec */
GPIOP4 |= 0x0004; /* P4_2 Outputs high level */
wait_100us(100); /* 10msec */
#elif defined(TARGET_VK_RZ_A1H)
/* -->4F<-- P1_14(ET_COL) */
GPIOPMC1 |= 0x4000;
GPIOPFCAE1 &= ~0x4000;
GPIOPFCE1 |= 0x4000;
GPIOPFC1 |= 0x4000;
GPIOPIPC1 |= 0x4000;
/* -->2F<-- P2_0(ET_TXCLK), P2_1(ET_TXER), P2_2(ET_TXEN), P2_3(ET_CRS), P2_4(ET_TXD0),
P2_5(ET_TXD1), P2_6(ET_TXD2), P2_7(ET_TXD3), P2_8(ET_RXD0), P2_9(ET_RXD1), P2_10(ET_RXD2) P2_11(ET_RXD3) */
GPIOPMC2 |= 0x0FFF;
GPIOPFCAE2 &= ~0x0FFF;
GPIOPFCE2 &= ~0x0FFF;
GPIOPFC2 |= 0x0FFF;
GPIOPIPC2 |= 0x0FFF;
/* -->3F<-- P3_3(ET_MDIO), P3_4(ET_RXCLK), P3_5(ET_RXER), P3_6(ET_RXDV) */
GPIOPMC3 |= 0x0078;
GPIOPFCAE3 &= ~0x0078;
GPIOPFCE3 &= ~0x0078;
GPIOPFC3 |= 0x0078;
GPIOPIPC3 |= 0x0078;
/* -->3F<-- P7_0(ET_MDC) */
GPIOPMC7 |= 0x0001;
GPIOPFCAE7 &= ~0x0001;
GPIOPFCE7 |= 0x0001;
GPIOPFC7 &= ~0x0001;
GPIOPIPC7 |= 0x0001;
/* Resets the E-MAC,E-DMAC */
lan_reg_reset();
#else
#error "There is no initialization processing."
#endif
/* Resets the PHY-LSI */
phy_reg_write(BASIC_MODE_CONTROL_REG, 0x8000);
for (i = 10000; i > 0; i--) {
val = phy_reg_read(BASIC_MODE_CONTROL_REG);
if (((uint32_t)val & 0x8000uL) == 0) {
break; /* Reset complete */
}
}
phy_id = ((uint32_t)phy_reg_read(PHY_IDENTIFIER1_REG) << 16)
| (uint32_t)phy_reg_read(PHY_IDENTIFIER2_REG);
Interrupt_priority = p_ethcfg->int_priority;
p_recv_cb_fnc = p_ethcfg->recv_cb;
start_stop = 1;
if (p_ethcfg->ether_mac != NULL) {
(void)memcpy(mac_addr, p_ethcfg->ether_mac, sizeof(mac_addr));
} else {
ethernet_address(mac_addr); /* Get MAC Address */
}
return 0;
}
void ethernetext_start_stop(int32_t mode) {
if (mode == 1) {
/* start */
ETHEREDTRR0 |= EDTRR0_TR;
ETHEREDRRR0 |= EDRRR0_RR;
start_stop = 1;
} else {
/* stop */
ETHEREDTRR0 &= ~EDTRR0_TR;
ETHEREDRRR0 &= ~EDRRR0_RR;
start_stop = 0;
}
}
int ethernetext_chk_link_mode(void) {
int32_t link;
uint16_t data;
if ((phy_id & M_PHY_ID) == PHY_ID_LAN8710A) {
data = phy_reg_read(PHY_SP_CTL_STS_REG);
switch (((uint32_t)data >> 2) & 0x00000007) {
case 0x0001:
link = HALF_10M;
break;
case 0x0005:
link = FULL_10M;
break;
case 0x0002:
link = HALF_TX;
break;
case 0x0006:
link = FULL_TX;
break;
default:
link = NEGO_FAIL;
break;
}
} else {
link = NEGO_FAIL;
}
return link;
}
void ethernetext_set_link_mode(int32_t link) {
lan_reg_reset(); /* Resets the E-MAC,E-DMAC */
lan_desc_create(); /* Initialize of buffer memory */
lan_reg_set(link); /* E-DMAC, E-MAC initialization */
}
void ethernetext_add_multicast_group(const uint8_t *addr) {
uint32_t cnt;
uint32_t tmp_data_h;
uint32_t tmp_data_l;
if (tsu_ten_tmp == 0xFFFFFFFF) {
ethernetext_set_all_multicast(1);
} else {
tmp_data_h = ((uint32_t)addr[0] << 24) | ((uint32_t)addr[1] << 16) | ((uint32_t)addr[2] << 8) | ((uint32_t)addr[3]);
tmp_data_l = ((uint32_t)addr[4] << 8) | ((uint32_t)addr[5]);
for (cnt = 0; cnt < 32; cnt++) {
if ((tsu_ten_tmp & (0x80000000 >> cnt)) == 0) {
while ((ETHERTSU_ADSBSY & 0x00000001) != 0) {
;
}
ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRH0 = tmp_data_h;
while ((ETHERTSU_ADSBSY & 0x00000001) != 0) {
;
}
ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRL0 = tmp_data_l;
if ((ETHERECMR0 & 0x00002000) != 0) {
ETHERTSU_TEN |= (0x80000000 >> cnt);
}
tsu_ten_tmp |= (0x80000000 >> cnt);
break;
}
}
}
}
void ethernetext_remove_multicast_group(const uint8_t *addr) {
uint32_t cnt;
uint32_t tmp_data_h;
uint32_t tmp_data_l;
tmp_data_h = ((uint32_t)addr[0] << 24) | ((uint32_t)addr[1] << 16) | ((uint32_t)addr[2] << 8) | ((uint32_t)addr[3]);
tmp_data_l = ((uint32_t)addr[4] << 8) | ((uint32_t)addr[5]);
for (cnt = 0; cnt< 32; cnt++) {
if ((ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRH0 == tmp_data_h) &&
(ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRL0 == tmp_data_l)) {
while ((ETHERTSU_ADSBSY & 0x00000001) != 0) {
;
}
ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRH0 = 0;
while ((ETHERTSU_ADSBSY & 0x00000001) != 0) {
;
}
ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRL0 = 0;
ETHERTSU_TEN &= ~(0x80000000 >> cnt);
tsu_ten_tmp &= ~(0x80000000 >> cnt);
break;
}
}
}
void ethernetext_set_all_multicast(int all) {
if (all != 0) {
ETHERECMR0 &= ~(0x00002000);
ETHERTSU_TEN = 0x00000000;
} else {
ETHERECMR0 |= 0x00002000;
ETHERTSU_TEN = tsu_ten_tmp;
}
}
int ethernet_init() {
ethernet_cfg_t ethcfg;
ethcfg.int_priority = 5;
ethcfg.recv_cb = NULL;
ethcfg.ether_mac = NULL;
ethernetext_init(&ethcfg);
ethernet_set_link(-1, 0); /* Auto-Negotiation */
return 0;
}
void ethernet_free() {
ETHERARSTR |= 0x00000001; /* ETHER software reset */
CPGSTBCR7 |= CPG_STBCR7_BIT_MSTP74; /* disable ETHER clock */
}
int ethernet_write(const char *data, int slen) {
edmac_send_desc_t *p_send_desc;
int32_t copy_size;
if ((p_eth_desc_dsend == NULL) || (data == NULL) || (slen < 0)
|| (tx_wite_offset < 0) || (tx_wite_offset >= MAX_SEND_SIZE)) {
copy_size = 0;
} else {
p_send_desc = &p_eth_desc_dsend[send_top_index]; /* Current descriptor */
if ((p_send_desc->td0 & TD0_TACT) != 0) {
copy_size = 0;
} else {
copy_size = MAX_SEND_SIZE - tx_wite_offset;
if (copy_size > slen) {
copy_size = slen;
}
(void)memcpy(&p_send_desc->td2[tx_wite_offset], data, copy_size);
tx_wite_offset += copy_size;
}
}
return copy_size;
}
int ethernet_send() {
edmac_send_desc_t *p_send_desc;
int32_t ret;
if ((p_eth_desc_dsend == NULL) || (tx_wite_offset <= 0)) {
ret = 0;
} else {
/* Transfer 1 frame */
p_send_desc = &p_eth_desc_dsend[send_top_index]; /* Current descriptor */
/* Sets the frame length */
p_send_desc->td1 = ((uint32_t)tx_wite_offset << 16);
tx_wite_offset = 0;
/* Sets the transmit descriptor to transmit again */
p_send_desc->td0 &= (TD0_TACT | TD0_TDLE | TD0_TFP_TOP_BOTTOM);
p_send_desc->td0 |= TD0_TACT;
if ((start_stop == 1) && ((ETHEREDTRR0 & EDTRR0_TR) != EDTRR0_TR)) {
ETHEREDTRR0 |= EDTRR0_TR;
}
/* Update the current descriptor */
send_top_index++;
if (send_top_index >= NUM_OF_TX_DESCRIPTOR) {
send_top_index = 0;
}
ret = 1;
}
return ret;
}
int ethernet_receive() {
edmac_recv_desc_t *p_recv_desc;
int32_t receive_size = 0;
if (p_eth_desc_drecv != NULL) {
if (p_recv_end_desc != NULL) {
/* Sets the receive descriptor to receive again */
p_recv_end_desc->rd0 &= (RD0_RACT | RD0_RDLE);
p_recv_end_desc->rd0 |= RD0_RACT;
if ((start_stop == 1) && ((ETHEREDRRR0 & EDRRR0_RR) == 0)) {
ETHEREDRRR0 |= EDRRR0_RR;
}
p_recv_end_desc = NULL;
}
p_recv_desc = &p_eth_desc_drecv[recv_top_index]; /* Current descriptor */
if ((p_recv_desc->rd0 & RD0_RACT) == 0) {
/* Receives 1 frame */
if (((p_recv_desc->rd0 & RD0_RFE) != 0) && ((p_recv_desc->rd0 & RD0_RFS_ERROR) != 0)) {
/* Receive frame error */
/* Sets the receive descriptor to receive again */
p_recv_desc->rd0 &= (RD0_RACT | RD0_RDLE);
p_recv_desc->rd0 |= RD0_RACT;
if ((start_stop == 1) && ((ETHEREDRRR0 & EDRRR0_RR) == 0)) {
ETHEREDRRR0 |= EDRRR0_RR;
}
} else {
/* Copies the received frame */
rx_read_offset = 0;
p_recv_end_desc = p_recv_desc;
receive_size = (p_recv_desc->rd1 & RD1_RDL_MSK); /* number of bytes received */
}
/* Update the current descriptor */
recv_top_index++;
if (recv_top_index >= NUM_OF_TX_DESCRIPTOR) {
recv_top_index = 0;
}
}
}
return receive_size;
}
int ethernet_read(char *data, int dlen) {
edmac_recv_desc_t *p_recv_desc = p_recv_end_desc; /* Read top descriptor */
int32_t copy_size;
if ((data == NULL) || (dlen < 0) || (p_recv_desc == NULL)) {
copy_size = 0;
} else {
copy_size = (p_recv_desc->rd1 & RD1_RDL_MSK) - rx_read_offset;
if (copy_size > dlen) {
copy_size = dlen;
}
(void)memcpy(data, &p_recv_desc->rd2[rx_read_offset], (size_t)copy_size);
rx_read_offset += copy_size;
}
return copy_size;
}
void ethernet_address(char *mac) {
if (mac != NULL) {
mbed_mac_address(mac); /* Get MAC Address */
}
}
int ethernet_link(void) {
int32_t ret;
uint16_t data;
data = phy_reg_read(BASIC_MODE_STATUS_REG);
if (((uint32_t)data & BASIC_STS_MSK_LINK) != 0) {
ret = 1;
} else {
ret = 0;
}
return ret;
}
void ethernet_set_link(int speed, int duplex) {
uint16_t data;
int32_t i;
int32_t link;
if ((speed < 0) || (speed > 1)) {
data = 0x1000; /* Auto-Negotiation Enable */
phy_reg_write(BASIC_MODE_CONTROL_REG, data);
for (i = 0; i < 1000; i++) {
data = phy_reg_read(BASIC_MODE_STATUS_REG);
if (((uint32_t)data & BASIC_STS_MSK_AUTO_CMP) != 0) {
break;
}
wait_100us(10);
}
} else {
data = (uint16_t)(((uint32_t)speed << 13) | ((uint32_t)duplex << 8));
phy_reg_write(BASIC_MODE_CONTROL_REG, data);
wait_100us(1);
}
link = ethernetext_chk_link_mode();
ethernetext_set_link_mode(link);
}
void INT_Ether(void) {
uint32_t stat_edmac;
uint32_t stat_etherc;
/* Clear the interrupt request flag */
stat_edmac = (ETHEREESR0 & ETHEREESIPR0); /* Targets are restricted to allowed interrupts */
ETHEREESR0 = stat_edmac;
/* Reception-related */
if (stat_edmac & EDMAC_EESIPR_INI_RECV) {
if (p_recv_cb_fnc != NULL) {
p_recv_cb_fnc();
}
}
/* E-MAC-related */
if (stat_edmac & EDMAC_EESIPR_INI_EtherC) {
/* Clear the interrupt request flag */
stat_etherc = (ETHERECSR0 & ETHERECSIPR0); /* Targets are restricted to allowed interrupts */
ETHERECSR0 = stat_etherc;
}
}
static void lan_reg_reset(void) {
volatile int32_t j = 400; /* Wait for B dia 256 cycles ((I dia/B dia)*256)/6cyc = 8*256/6 = 342 */
ETHERARSTR |= 0x00000001; /* ETHER software reset */
while (j--) {
/* Do Nothing */
}
ETHEREDSR0 |= 0x00000003; /* E-DMAC software reset */
ETHEREDMR0 |= 0x00000003; /* Set SWRR and SWRT simultaneously */
/* Check clear software reset */
while ((ETHEREDMR0 & 0x00000003) != 0) {
/* Do Nothing */
}
}
static void lan_desc_create(void) {
int32_t i;
uint8_t *p_memory_top;
(void)memset((void *)ethernet_nc_memory, 0, sizeof(ethernet_nc_memory));
p_memory_top = ethernet_nc_memory;
/* Descriptor area configuration */
p_eth_desc_dsend = (edmac_send_desc_t *)p_memory_top;
p_memory_top += (sizeof(edmac_send_desc_t) * NUM_OF_TX_DESCRIPTOR);
p_eth_desc_drecv = (edmac_recv_desc_t *)p_memory_top;
p_memory_top += (sizeof(edmac_recv_desc_t) * NUM_OF_RX_DESCRIPTOR);
/* Transmit descriptor */
for (i = 0; i < NUM_OF_TX_DESCRIPTOR; i++) {
p_eth_desc_dsend[i].td2 = p_memory_top; /* TD2 TBA */
p_memory_top += SIZE_OF_BUFFER;
p_eth_desc_dsend[i].td1 = 0; /* TD1 TDL */
p_eth_desc_dsend[i].td0 = TD0_TFP_TOP_BOTTOM; /* TD0:1frame/1buf1buf, transmission disabled */
}
p_eth_desc_dsend[i - 1].td0 |= TD0_TDLE; /* Set the last descriptor */
/* Receive descriptor */
for (i = 0; i < NUM_OF_RX_DESCRIPTOR; i++) {
p_eth_desc_drecv[i].rd2 = p_memory_top; /* RD2 RBA */
p_memory_top += SIZE_OF_BUFFER;
p_eth_desc_drecv[i].rd1 = ((uint32_t)SIZE_OF_BUFFER << 16); /* RD1 RBL */
p_eth_desc_drecv[i].rd0 = RD0_RACT; /* RD0:reception enabled */
}
p_eth_desc_drecv[i - 1].rd0 |= RD0_RDLE; /* Set the last descriptor */
/* Initialize descriptor management information */
send_top_index = 0;
recv_top_index = 0;
rx_read_offset = 0;
tx_wite_offset = 0;
p_recv_end_desc = NULL;
}
static void lan_reg_set(int32_t link) {
/* MAC address setting */
ETHERMAHR0 = ((uint8_t)mac_addr[0] << 24)
| ((uint8_t)mac_addr[1] << 16)
| ((uint8_t)mac_addr[2] << 8)
| (uint8_t)mac_addr[3];
ETHERMALR0 = ((uint8_t)mac_addr[4] << 8)
| (uint8_t)mac_addr[5];
/* E-DMAC */
ETHERTDLAR0 = (uint32_t)&p_eth_desc_dsend[0];
ETHERRDLAR0 = (uint32_t)&p_eth_desc_drecv[0];
ETHERTDFAR0 = (uint32_t)&p_eth_desc_dsend[0];
ETHERRDFAR0 = (uint32_t)&p_eth_desc_drecv[0];
ETHERTDFXR0 = (uint32_t)&p_eth_desc_dsend[NUM_OF_TX_DESCRIPTOR - 1];
ETHERRDFXR0 = (uint32_t)&p_eth_desc_drecv[NUM_OF_RX_DESCRIPTOR - 1];
ETHERTDFFR0 |= 0x00000001; /* TDLF Transmit Descriptor Queue Last Flag : Last descriptor (1) */
ETHERRDFFR0 |= 0x00000001; /* RDLF Receive Descriptor Queue Last Flag : Last descriptor (1) */
ETHEREDMR0 |= 0x00000040; /* Little endian */
ETHERTRSCER0 &= ~0x0003009F; /* All clear */
ETHERTFTR0 &= ~0x000007FF; /* TFT[10:0] Transmit FIFO Threshold : Store and forward modes (H'000) */
ETHERFDR0 |= 0x00000707; /* Transmit FIFO Size:2048 bytes, Receive FIFO Size:2048 bytes */
ETHERRMCR0 |= 0x00000001; /* RNC Receive Enable Control : Continuous reception enabled (1) */
ETHERFCFTR0 &= ~0x001F00FF;
ETHERFCFTR0 |= 0x00070007;
ETHERRPADIR0 &= ~0x001FFFFF; /* Padding Size:No padding insertion, Padding Slot:Inserts at first byte */
/* E-MAC */
ETHERECMR0 &= ~0x04BF2063; /* All clear */
ETHERRFLR0 &= ~0x0003FFFF; /* RFL[17:0] Receive Frame Length : 1518 bytes (H'00000) */
ETHERAPR0 &= ~0x0000FFFF; /* AP[15:0] Automatic PAUSE : Flow control is disabled (H'0000) */
ETHERMPR0 &= ~0x0000FFFF; /* MP[15:0] Manual PAUSE : Flow control is disabled (H'0000) */
ETHERTPAUSER0 &= ~0x0000FFFF; /* Upper Limit for Automatic PAUSE Frame : Retransmit count is unlimited */
ETHERCSMR &= ~0xC000003F; /* The result of checksum is not written back to the receive descriptor */
if ((link == FULL_TX) || (link == FULL_10M) || (link == NEGO_FAIL)) {
ETHERECMR0 |= 0x00000002; /* Set to full-duplex mode */
} else {
ETHERECMR0 &= ~0x00000002; /* Set to half-duplex mode */
}
ETHERECMR0 |= 0x00002000; /* MCT = 1 */
/* Interrupt-related */
if (p_recv_cb_fnc != NULL) {
ETHEREESR0 |= 0xFF7F009F; /* Clear all status (by writing 1) */
ETHEREESIPR0 |= 0x00040000; /* FR Frame Reception (1) */
ETHERECSR0 |= 0x00000011; /* Clear all status (clear by writing 1) */
ETHERECSIPR0 &= ~0x00000011; /* PFROIP Disable, ICDIP Disable */
InterruptHandlerRegister(ETHERI_IRQn, INT_Ether); /* Ethernet interrupt handler registration */
GIC_SetPriority(ETHERI_IRQn, Interrupt_priority); /* Ethernet interrupt priority */
GIC_SetConfiguration(ETHERI_IRQn, 1);
GIC_EnableIRQ(ETHERI_IRQn); /* Enables the E-DMAC interrupt */
}
ETHERECMR0 |= 0x00000060; /* RE Enable, TE Enable */
/* Enable transmission/reception */
if ((start_stop == 1) && ((ETHEREDRRR0 & 0x00000001) == 0)) {
ETHEREDRRR0 |= 0x00000001; /* RR */
}
}
static uint16_t phy_reg_read(uint16_t reg_addr) {
uint16_t data;
mii_preamble();
mii_cmd(reg_addr, PHY_READ);
mii_z();
mii_reg_read(&data);
mii_z();
return data;
}
static void phy_reg_write(uint16_t reg_addr, uint16_t data) {
mii_preamble();
mii_cmd(reg_addr, PHY_WRITE);
mii_write_1();
mii_write_0();
mii_reg_write(data);
mii_z();
}
static void mii_preamble(void) {
int32_t i = 32;
for (i = 32; i > 0; i--) {
/* 1 is output via the MII (Media Independent Interface) block. */
mii_write_1();
}
}
static void mii_cmd(uint16_t reg_addr, uint32_t option) {
int32_t i;
uint16_t data = 0;
data |= (PHY_ST << 14); /* ST code */
data |= (option << 12); /* OP code */
data |= (PHY_ADDR << 7); /* PHY Address */
data |= (uint16_t)(reg_addr << 2); /* Reg Address */
for (i = 14; i > 0; i--) {
if ((data & 0x8000) == 0) {
mii_write_0();
} else {
mii_write_1();
}
data <<= 1;
}
}
static void mii_reg_read(uint16_t *data) {
int32_t i;
uint16_t reg_data = 0;
/* Data are read in one bit at a time */
for (i = 16; i > 0; i--) {
set_ether_pir(PIR0_MDC_LOW);
set_ether_pir(PIR0_MDC_HIGH);
reg_data <<= 1;
reg_data |= (uint16_t)((ETHERPIR0 & PIR0_MDI) >> 3); /* MDI read */
set_ether_pir(PIR0_MDC_HIGH);
set_ether_pir(PIR0_MDC_LOW);
}
*data = reg_data;
}
static void mii_reg_write(uint16_t data) {
int32_t i;
/* Data are written one bit at a time */
for (i = 16; i > 0; i--) {
if ((data & 0x8000) == 0) {
mii_write_0();
} else {
mii_write_1();
}
data <<= 1;
}
}
static void mii_z(void) {
set_ether_pir(PIR0_MDC_LOW);
set_ether_pir(PIR0_MDC_HIGH);
set_ether_pir(PIR0_MDC_HIGH);
set_ether_pir(PIR0_MDC_LOW);
}
static void mii_write_1(void) {
set_ether_pir(PIR0_MDO | PIR0_MMD);
set_ether_pir(PIR0_MDO | PIR0_MMD | PIR0_MDC);
set_ether_pir(PIR0_MDO | PIR0_MMD | PIR0_MDC);
set_ether_pir(PIR0_MDO | PIR0_MMD);
}
static void mii_write_0(void) {
set_ether_pir(PIR0_MMD);
set_ether_pir(PIR0_MMD | PIR0_MDC);
set_ether_pir(PIR0_MMD | PIR0_MDC);
set_ether_pir(PIR0_MMD);
}
static void set_ether_pir(uint32_t set_data) {
int32_t i;
for (i = MDC_WAIT; i > 0; i--) {
ETHERPIR0 = set_data;
}
}
static void wait_100us(int32_t wait_cnt) {
volatile int32_t j = LOOP_100us * wait_cnt;
while (--j) {
/* Do Nothing */
}
}
#endif /* DEVICE_ETHERNET */