mbed-os/targets/TARGET_TOSHIBA/TARGET_TMPM3H6/i2c_api.c

378 lines
9.1 KiB
C

/* mbed Microcontroller Library
* (C)Copyright TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION 2018 All rights reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "i2c_api.h"
#include "mbed_error.h"
#include "pinmap.h"
#include "gpio_include.h"
static const PinMap PinMap_I2C_SDA[] = {
{PC1, I2C_0, PIN_DATA(1, 2)},
{PA5, I2C_1, PIN_DATA(1, 2)},
{PL1, I2C_2, PIN_DATA(3, 2)},
{NC, NC, 0}
};
static const PinMap PinMap_I2C_SCL[] = {
{PC0, I2C_0, PIN_DATA(1, 2)},
{PA4, I2C_1, PIN_DATA(1, 2)},
{PL0, I2C_2, PIN_DATA(3, 2)},
{NC, NC, 0}
};
// Clock setting structure definition
typedef struct {
uint32_t sck;
uint32_t prsck;
} I2C_clock_setting_t;
// SCK Divider value table
static const uint32_t I2C_SCK_DIVIDER_TBL[8] = {
20, 24, 32, 48, 80, 144, 272, 528
};
I2C_clock_setting_t clk;
static uint32_t start_flag = 0;
static int32_t wait_status(i2c_t *p_obj);
static void i2c_start_bit(i2c_t *obj);
// Initialize the I2C peripheral. It sets the default parameters for I2C
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{
MBED_ASSERT(obj != NULL);
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
I2CName i2c_name = (I2CName)pinmap_merge(i2c_sda, i2c_scl);
MBED_ASSERT((int)i2c_name != NC);
switch (i2c_name) {
case I2C_0:
TSB_CG_FSYSENA_IPENA20 = ENABLE;
TSB_CG_FSYSENA_IPENA02 = ENABLE;
obj->i2c = TSB_I2C0;
break;
case I2C_1:
TSB_CG_FSYSENA_IPENA21 = ENABLE;
TSB_CG_FSYSENA_IPENA00 = ENABLE;
obj->i2c = TSB_I2C1;
break;
case I2C_2:
TSB_CG_FSYSENA_IPENA22 = ENABLE;
TSB_CG_FSYSENA_IPENA10 = ENABLE;
obj->i2c = TSB_I2C2;
break;
default:
error("I2C is not available");
break;
}
pinmap_pinout(sda, PinMap_I2C_SDA);
pin_mode(sda, OpenDrain);
pin_mode(sda, PullUp);
pinmap_pinout(scl, PinMap_I2C_SCL);
pin_mode(scl, OpenDrain);
pin_mode(scl, PullUp);
i2c_reset(obj);
i2c_frequency(obj, 100000);
obj->i2c->CR2 = (I2CxCR2_I2CM_ENABLE | I2CxCR2_TRX | I2CxCR2_PIN_CLEAR |
I2CxCR2_INIT);
obj->i2c->OP = I2CxOP_INIT;
obj->i2c->IE = I2CxIE_CLEAR;
}
// Configure the I2C frequency
void i2c_frequency(i2c_t *obj, int hz)
{
uint64_t sck;
uint64_t tmp_sck;
uint64_t prsck;
uint64_t tmp_prsck;
uint64_t fscl;
uint64_t tmp_fscl;
uint64_t fx;
SystemCoreClockUpdate();
if (hz <= 1000000) {
sck = tmp_sck = 0;
prsck = tmp_prsck = 1;
fscl = tmp_fscl = 0;
for (prsck = 1; prsck <= 32; prsck++) {
fx = ((uint64_t)SystemCoreClock / prsck);
if ((fx < 20000000U) && (fx > 6666666U)) {
for (sck = 0; sck <= 7; sck++) {
fscl = (fx / (uint64_t)I2C_SCK_DIVIDER_TBL[sck]);
if ((fscl <= (uint64_t)hz) && (fscl > tmp_fscl)) {
tmp_fscl = fscl;
tmp_sck = sck;
tmp_prsck = (prsck < 32) ? prsck : 0;
}
}
}
}
clk.sck = (uint32_t)tmp_sck;
clk.prsck = (tmp_prsck < 32) ? (uint32_t)(tmp_prsck - 1) : 0;
}
obj->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
obj->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
}
int i2c_start(i2c_t *obj)
{
start_flag = 1; // Start Condition
return 0;
}
int i2c_stop(i2c_t *obj)
{
uint32_t timeout = I2C_TIMEOUT;
obj->i2c->CR2 = I2CxCR2_STOP_CONDITION;
while ((obj->i2c->SR & I2CxSR_BB) == I2CxSR_BB) {
if (timeout == 0) {
break;
}
timeout--;
}
return 0;
}
void i2c_reset(i2c_t *obj)
{
obj->i2c->CR2 = I2CxCR2_SWRES_10;
obj->i2c->CR2 = I2CxCR2_SWRES_01;
}
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
{
int32_t result = 0;
int32_t count = 0;
int32_t pdata = 0;
if (length > 0) {
start_flag = 1; // Start Condition
if (i2c_byte_write(obj, (int32_t)((uint32_t)address | 1U)) == I2C_ACK) {
while (count < length) {
pdata = i2c_byte_read(obj, ((count < (length - 1)) ? 0 : 1));
if (pdata < 0) {
break;
}
data[count++] = (uint8_t)pdata;
}
result = count;
} else {
stop = 1;
result = I2C_ERROR_NO_SLAVE;
}
if (stop) { // Stop Condition
i2c_stop(obj);
}
}
return result;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
{
int32_t result = 0;
int32_t count = 0;
start_flag = 1; // Start Condition
if (i2c_byte_write(obj, address) == I2C_ACK) {
while (count < length) {
if (i2c_byte_write(obj, (int32_t)data[count++]) < I2C_ACK) {
break;
}
}
result = count;
} else {
stop = 1;
result = I2C_ERROR_NO_SLAVE;
}
if (stop) { // Stop Condition
i2c_stop(obj);
}
return result;
}
int i2c_byte_read(i2c_t *obj, int last)
{
int32_t result = 0;
obj->i2c->ST = I2CxST_CLEAR;
if (last) {
obj->i2c->OP |= I2CxOP_MFACK;
} else {
obj->i2c->OP &= ~I2CxOP_MFACK;
}
obj->i2c->DBR = (0 & I2CxDBR_DB_MASK);
if (wait_status(obj) < 0) {
result = -1;
} else {
result = (int32_t)(obj->i2c->DBR & I2CxDBR_DB_MASK);
}
return result;
}
int i2c_byte_write(i2c_t *obj, int data)
{
int32_t result = 0;
obj->i2c->ST = I2CxST_CLEAR;
if (start_flag == 1) {
obj->i2c->DBR = (data & I2CxDBR_DB_MASK);
i2c_start_bit(obj);
start_flag = 0;
} else {
obj->i2c->DBR = (data & I2CxDBR_DB_MASK);
}
if (wait_status(obj) < 0) {
return -1;
}
if (!((obj->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
result = 1;
} else {
result = 0;
}
return result;
}
static void i2c_start_bit(i2c_t *obj) // Send START command
{
uint32_t opreg = 0;
opreg = obj->i2c->OP;
opreg &= ~(I2CxOP_RSTA | I2CxOP_SREN);
if ((obj->i2c->SR & I2CxSR_BB)) {
opreg |= I2CxOP_SREN;
}
obj->i2c->OP = opreg;
obj->i2c->CR2 |= I2CxCR2_START_CONDITION;
}
static int32_t wait_status(i2c_t *p_obj)
{
volatile int32_t timeout;
timeout = I2C_TIMEOUT;
while (!((p_obj->i2c->ST & I2CxST_I2C) == I2CxST_I2C)) {
if ((timeout--) == 0) {
return (-1);
}
}
return 0;
}
void i2c_slave_mode(i2c_t *obj, int enable_slave)
{
if (enable_slave) {
obj->i2c->OP = I2CxOP_SLAVE_INIT;
obj->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
obj->i2c->CR2 = (I2CxCR2_INIT | I2CxCR2_PIN_CLEAR);
obj->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
obj->i2c->AR = (obj->address & I2CAR_SA_MASK);
obj->i2c->IE = I2CxIE_INTI2C;
} else {
i2c_reset(obj);
obj->i2c->CR2 = (I2CxCR2_I2CM_ENABLE | I2CxCR2_TRX | I2CxCR2_PIN_CLEAR |
I2CxCR2_INIT);
obj->i2c->OP = I2CxOP_INIT;
obj->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
obj->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
NVIC_DisableIRQ(obj->IRQn);
NVIC_ClearPendingIRQ(obj->IRQn);
obj->i2c->ST = I2CxST_CLEAR;
}
}
int i2c_slave_receive(i2c_t *obj)
{
int32_t result = I2C_NO_DATA;
if ((obj->i2c->ST & I2CxST_I2C) && (obj->i2c->OP & I2CxOP_SAST)) {
if ((obj->i2c->SR & I2CxSR_TRX) == I2CxSR_TRX) {
result = I2C_READ_ADDRESSED;
} else {
result = I2C_WRITE_ADDRESSED;
}
}
return (result);
}
int i2c_slave_read(i2c_t *obj, char *data, int length)
{
int32_t count = 0;
while (count < length) {
int32_t pdata = i2c_byte_read(obj, ((count < (length - 1)) ? 0 : 1));
if ((obj->i2c->SR & I2CxSR_TRX)) {
return (count);
} else {
if (pdata < 0) {
break;
}
data[count++] = (uint8_t)pdata;
}
}
i2c_slave_mode(obj,1);
return (count);
}
int i2c_slave_write(i2c_t *obj, const char *data, int length)
{
int32_t count = 0;
while (count < length) {
if (i2c_byte_write(obj, (int32_t)data[count++]) < I2C_ACK) {
break;
}
}
i2c_slave_mode(obj,1);
return (count);
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
{
obj->address = address & I2CAR_SA_MASK;
i2c_slave_mode(obj,1);
}