mbed-os/targets/TARGET_NORDIC/TARGET_NRF5x/TARGET_NRF52/spi_api.c

763 lines
25 KiB
C

/*
* Copyright (c) 2017 Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA
* integrated circuit in a product or a software update for such product, must reproduce
* the above copyright notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific prior
* written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary or object form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#if DEVICE_SPI
#include "hal/spi_api.h"
#include "object_owners.h"
#include "pinmap_ex.h"
#include "nrf_drv_spi.h"
/* Pre-allocate instances and share them globally. */
static const nrf_drv_spi_t nordic_nrf5_spi_instance[3] = {
NRF_DRV_SPI_INSTANCE(0),
NRF_DRV_SPI_INSTANCE(1),
NRF_DRV_SPI_INSTANCE(2)
};
/* Keep track of which instance has been initialized. */
static bool nordic_nrf5_spi_initialized[3] = { false, false, false };
/* Forware declare interrupt handler. */
#if DEVICE_SPI_ASYNCH
static void nordic_nrf5_spi_event_handler(nrf_drv_spi_evt_t const *p_event, void *p_context);
#endif
/* Forward declaration. These functions are implemented in the driver but not
* set up in the NVIC due to it being relocated.
*/
void SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQHandler(void);
void SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1_IRQHandler(void);
void SPIM2_SPIS2_SPI2_IRQHandler(void);
/**
* Brief Reconfigure peripheral.
*
* If the peripheral has changed ownership clear old configuration and
* re-initialize the peripheral with the new settings.
*
* Parameter obj The object
* Parameter handler Optional callback handler.
* Parameter force_change Force change regardless of ownership.
*/
static void spi_configure_driver_instance(spi_t *obj)
{
#if DEVICE_SPI_ASYNCH
struct spi_s *spi_inst = &obj->spi;
#else
struct spi_s *spi_inst = obj;
#endif
int instance = spi_inst->instance;
/* Get pointer to object of the current owner of the peripheral. */
void *current_owner = object_owner_spi2c_get(instance);
/* Check if reconfiguration is actually necessary. */
if ((obj != current_owner) || spi_inst->update) {
/* Update applied, reset flag. */
spi_inst->update = false;
/* Clean up and uninitialize peripheral if already initialized. */
if (nordic_nrf5_spi_initialized[instance]) {
nrf_drv_spi_uninit(&nordic_nrf5_spi_instance[instance]);
}
#if DEVICE_SPI_ASYNCH
/* Set callback handler in asynchronous mode. */
if (spi_inst->handler) {
nrf_drv_spi_init(&nordic_nrf5_spi_instance[instance], &(spi_inst->config), nordic_nrf5_spi_event_handler, obj);
} else {
nrf_drv_spi_init(&nordic_nrf5_spi_instance[instance], &(spi_inst->config), NULL, NULL);
}
#else
/* Set callback handler to NULL in synchronous mode. */
nrf_drv_spi_init(&nordic_nrf5_spi_instance[instance], &(spi_inst->config), NULL, NULL);
#endif
/* Mark instance as initialized. */
nordic_nrf5_spi_initialized[instance] = true;
/* Claim ownership of peripheral. */
object_owner_spi2c_set(instance, obj);
}
}
/** Initialize the SPI peripheral
*
* Configures the pins used by SPI, sets a default format and frequency, and enables the peripheral
* Parameter obj The SPI object to initialize
* Parameter mosi The pin to use for MOSI
* Parameter miso The pin to use for MISO
* Parameter sclk The pin to use for SCLK
* Parameter ssel The pin to use for SSEL
*/
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
#if DEVICE_SPI_ASYNCH
struct spi_s *spi_inst = &obj->spi;
#else
struct spi_s *spi_inst = obj;
#endif
/* Get instance based on requested pins. */
spi_inst->instance = pin_instance_spi(mosi, miso, sclk);
MBED_ASSERT(spi_inst->instance < ENABLED_SPI_COUNT);
/* Store chip select separately for manual enabling. */
spi_inst->cs = ssel;
/* Store pins except chip select. */
spi_inst->config.sck_pin = sclk;
spi_inst->config.mosi_pin = mosi;
spi_inst->config.miso_pin = miso;
spi_inst->config.ss_pin = NRF_DRV_SPI_PIN_NOT_USED;
/* Use the default config. */
spi_inst->config.irq_priority = SPI_DEFAULT_CONFIG_IRQ_PRIORITY;
spi_inst->config.orc = SPI_FILL_CHAR;
spi_inst->config.frequency = NRF_DRV_SPI_FREQ_1M;
spi_inst->config.mode = NRF_DRV_SPI_MODE_0;
spi_inst->config.bit_order = NRF_DRV_SPI_BIT_ORDER_MSB_FIRST;
#if DEVICE_SPI_ASYNCH
/* Set default values for asynchronous variables. */
spi_inst->handler = 0;
spi_inst->mask = 0;
spi_inst->event = 0;
#endif
/* Configure peripheral. This is called on each init to ensure all pins are set correctly
* according to the SPI mode before calling CS for the first time.
*/
spi_configure_driver_instance(obj);
/* Configure GPIO pin if chip select has been set. */
if (ssel != NC) {
nrf_gpio_pin_set(ssel);
nrf_gpio_cfg_output(ssel);
}
static bool first_init = true;
if (first_init) {
first_init = false;
/* Register interrupt handlers in driver with the NVIC. */
NVIC_SetVector(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQn, (uint32_t) SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQHandler);
NVIC_SetVector(SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1_IRQn, (uint32_t) SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1_IRQHandler);
NVIC_SetVector(SPIM2_SPIS2_SPI2_IRQn, (uint32_t) SPIM2_SPIS2_SPI2_IRQHandler);
}
}
/** Release a SPI object
*
* TODO: spi_free is currently unimplemented
* This will require reference counting at the C++ level to be safe
*
* Return the pins owned by the SPI object to their reset state
* Disable the SPI peripheral
* Disable the SPI clock
* Parameter obj The SPI object to deinitialize
*/
void spi_free(spi_t *obj)
{
#if DEVICE_SPI_ASYNCH
struct spi_s *spi_inst = &obj->spi;
#else
struct spi_s *spi_inst = obj;
#endif
int instance = spi_inst->instance;
/* Use driver uninit to free instance. */
nrf_drv_spi_uninit(&nordic_nrf5_spi_instance[instance]);
/* Mark instance as uninitialized. */
nordic_nrf5_spi_initialized[instance] = false;
}
/** Configure the SPI format
*
* Set the number of bits per frame, configure clock polarity and phase, shift order and master/slave mode.
* The default bit order is MSB.
* Parameter obj The SPI object to configure
* Parameter bits The number of bits per frame
* Parameter mode The SPI mode (clock polarity, phase, and shift direction)
* Parameter slave Zero for master mode or non-zero for slave mode
*/
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
/* SPI module only supports 8 bit transfers. */
MBED_ASSERT(bits == 8);
/* SPI module doesn't support Mbed HAL Slave API. */
MBED_ASSERT(slave == 0);
#if DEVICE_SPI_ASYNCH
struct spi_s *spi_inst = &obj->spi;
#else
struct spi_s *spi_inst = obj;
#endif
nrf_drv_spi_mode_t new_mode = NRF_DRV_SPI_MODE_0;
/* Convert Mbed HAL mode to Nordic mode. */
if(mode == 0) {
new_mode = NRF_DRV_SPI_MODE_0;
} else if(mode == 1) {
new_mode = NRF_DRV_SPI_MODE_1;
} else if(mode == 2) {
new_mode = NRF_DRV_SPI_MODE_2;
} else if(mode == 3) {
new_mode = NRF_DRV_SPI_MODE_3;
}
/* Check if configuration has changed. */
if (spi_inst->config.mode != new_mode) {
spi_inst->config.mode = new_mode;
/* Set flag to force update. */
spi_inst->update = true;
}
/* Configure peripheral if necessary. Must be called on each format to ensure the pins are set
* correctly according to the SPI mode.
*/
spi_configure_driver_instance(obj);
}
/** Set the SPI baud rate
*
* Actual frequency may differ from the desired frequency due to available dividers and bus clock
* Configures the SPI peripheral's baud rate
* Parameter obj The SPI object to configure
* Parameter hz The baud rate in Hz
*/
void spi_frequency(spi_t *obj, int hz)
{
#if DEVICE_SPI_ASYNCH
struct spi_s *spi_inst = &obj->spi;
#else
struct spi_s *spi_inst = obj;
#endif
nrf_drv_spi_frequency_t new_frequency = NRF_DRV_SPI_FREQ_1M;
/* Convert frequency to Nordic enum type. */
if (hz < 250000) {
new_frequency = NRF_DRV_SPI_FREQ_125K;
} else if (hz < 500000) {
new_frequency = NRF_DRV_SPI_FREQ_250K;
} else if (hz < 1000000) {
new_frequency = NRF_DRV_SPI_FREQ_500K;
} else if (hz < 2000000) {
new_frequency = NRF_DRV_SPI_FREQ_1M;
} else if (hz < 4000000) {
new_frequency = NRF_DRV_SPI_FREQ_2M;
} else if (hz < 8000000) {
new_frequency = NRF_DRV_SPI_FREQ_4M;
} else {
new_frequency = NRF_DRV_SPI_FREQ_8M;
}
/* Check if configuration has changed. */
if (spi_inst->config.frequency != new_frequency) {
spi_inst->config.frequency = new_frequency;
/* Set flag to force update. */
spi_inst->update = true;
}
}
/** Write a byte out in master mode and receive a value
*
* Parameter obj The SPI peripheral to use for sending
* Parameter value The value to send
* Return Returns the value received during send
*/
int spi_master_write(spi_t *obj, int value)
{
#if DEVICE_SPI_ASYNCH
struct spi_s *spi_inst = &obj->spi;
#else
struct spi_s *spi_inst = obj;
#endif
int instance = spi_inst->instance;
/* Local variables used in transfer. */
const uint8_t tx_buff = (uint8_t) value;
uint8_t rx_buff;
/* Configure peripheral if necessary. */
spi_configure_driver_instance(obj);
/* Manually clear chip select pin if defined. */
if (spi_inst->cs != NC) {
nrf_gpio_pin_clear(spi_inst->cs);
}
/* Transfer 1 byte. */
nrf_drv_spi_transfer(&nordic_nrf5_spi_instance[instance], &tx_buff, 1, &rx_buff, 1);
/* Manually set chip select pin if defined. */
if (spi_inst->cs != NC) {
nrf_gpio_pin_set(spi_inst->cs);
}
return rx_buff;
}
/** Write a block out in master mode and receive a value
*
* The total number of bytes sent and recieved will be the maximum of
* tx_length and rx_length. The bytes written will be padded with the
* value 0xff.
*
* Parameter obj The SPI peripheral to use for sending
* Parameter tx_buffer Pointer to the byte-array of data to write to the device
* Parameter tx_length Number of bytes to write, may be zero
* Parameter rx_buffer Pointer to the byte-array of data to read from the device
* Parameter rx_length Number of bytes to read, may be zero
* Parameter write_fill Default data transmitted while performing a read
* @returns
* The number of bytes written and read from the device. This is
* maximum of tx_length and rx_length.
*/
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, char write_fill)
{
#if DEVICE_SPI_ASYNCH
struct spi_s *spi_inst = &obj->spi;
#else
struct spi_s *spi_inst = obj;
#endif
int instance = spi_inst->instance;
/* Check if overflow character has changed. */
if (spi_inst->config.orc != write_fill) {
/* Store new overflow character and force reconfiguration. */
spi_inst->update = true;
spi_inst->config.orc = write_fill;
}
/* Configure peripheral if necessary. */
spi_configure_driver_instance(obj);
/* Manually clear chip select pin if defined. */
if (spi_inst->cs != NC) {
nrf_gpio_pin_clear(spi_inst->cs);
}
/* The Nordic SPI driver is only able to transfer 255 bytes at a time.
* The following code will write/read the data 255 bytes at a time and
* ensure that asymmetrical transfers are handled properly.
*/
int tx_offset = 0;
int rx_offset = 0;
ret_code_t result = NRF_SUCCESS;
/* Loop until all data is sent and received. */
while (((tx_length > 0) || (rx_length > 0)) && (result == NRF_SUCCESS)) {
/* Check if tx_length is larger than 255 and if so, limit to 255. */
int tx_actual_length = (tx_length > 255) ? 255 : tx_length;
/* Set tx buffer pointer. Set to NULL if no data is going to be transmitted. */
const uint8_t * tx_actual_buffer = (tx_actual_length > 0) ?
(const uint8_t *)(tx_buffer + tx_offset) :
NULL;
/* Check if rx_length is larger than 255 and if so, limit to 255. */
int rx_actual_length = (rx_length > 255) ? 255 : rx_length;
/* Set rx buffer pointer. Set to NULL if no data is going to be received. */
uint8_t * rx_actual_buffer = (rx_actual_length > 0) ?
(uint8_t *)(rx_buffer + rx_offset) :
NULL;
/* Blocking transfer. */
result = nrf_drv_spi_transfer(&nordic_nrf5_spi_instance[instance],
tx_actual_buffer,
tx_actual_length,
rx_actual_buffer,
rx_actual_length);
/* Update loop variables. */
tx_length -= tx_actual_length;
tx_offset += tx_actual_length;
rx_length -= rx_actual_length;
rx_offset += rx_actual_length;
}
/* Manually set chip select pin if defined. */
if (spi_inst->cs != NC) {
nrf_gpio_pin_set(spi_inst->cs);
}
return (rx_offset < tx_offset) ? tx_offset : rx_offset;
}
/** Checks if the specified SPI peripheral is in use
*
* Parameter obj The SPI peripheral to check
* Return non-zero if the peripheral is currently transmitting
*/
int spi_busy(spi_t *obj)
{
/* Legacy API call. Always return zero. */
return 0;
}
/** Get the module number
*
* Parameter obj The SPI peripheral to check
* Return The module number
*/
uint8_t spi_get_module(spi_t *obj)
{
#if DEVICE_SPI_ASYNCH
struct spi_s *spi_inst = &obj->spi;
#else
struct spi_s *spi_inst = obj;
#endif
return spi_inst->instance;
}
#if DEVICE_SPISLAVE
/** Check if a value is available to read
*
* Parameter obj The SPI peripheral to check
* Return non-zero if a value is available
*/
int spi_slave_receive(spi_t *obj)
{
return 0;
}
/** Get a received value out of the SPI receive buffer in slave mode
*
* Blocks until a value is available
* Parameter obj The SPI peripheral to read
* Return The value received
*/
int spi_slave_read(spi_t *obj)
{
return 0;
}
/** Write a value to the SPI peripheral in slave mode
*
* Blocks until the SPI peripheral can be written to
* Parameter obj The SPI peripheral to write
* Parameter value The value to write
*/
void spi_slave_write(spi_t *obj, int value)
{
return;
}
#endif
#if DEVICE_SPI_ASYNCH
/***
* _____ _____
* /\ /\ | __ \_ _|
* / \ ___ _ _ _ __ ___ / \ | |__) || |
* / /\ \ / __| | | | '_ \ / __| / /\ \ | ___/ | |
* / ____ \\__ \ |_| | | | | (__ / ____ \| | _| |_
* /_/ \_\___/\__, |_| |_|\___| /_/ \_\_| |_____|
* __/ |
* |___/
*/
static ret_code_t spi_master_transfer_async_continue(spi_t *obj)
{
/* Remaining data to be transferred. */
size_t tx_length = obj->tx_buff.length - obj->tx_buff.pos;
size_t rx_length = obj->rx_buff.length - obj->rx_buff.pos;
/* Cap TX length to 255 bytes. */
if (tx_length > 255) {
tx_length = 255;
}
/* Cap RX length to 255 bytes. */
if (rx_length > 255) {
rx_length = 255;
}
ret_code_t result = nrf_drv_spi_transfer(&nordic_nrf5_spi_instance[obj->spi.instance],
((const uint8_t *)(obj->tx_buff.buffer) + obj->tx_buff.pos),
tx_length,
((uint8_t *)(obj->rx_buff.buffer) + obj->rx_buff.pos),
rx_length);
return result;
}
/* Callback function for driver calls. This is called from ISR context. */
static void nordic_nrf5_spi_event_handler(nrf_drv_spi_evt_t const *p_event, void *p_context)
{
// Only safe to use with mbed-printf.
//DEBUG_PRINTF("nordic_nrf5_twi_event_handler: %d %p\r\n", p_event->type, p_context);
bool signal_complete = false;
bool signal_error = false;
spi_t *obj = (spi_t *) p_context;
struct spi_s *spi_inst = &obj->spi;
if (p_event->type == NRF_DRV_SPI_EVENT_DONE) {
/* Update buffers with new positions. */
obj->tx_buff.pos += p_event->data.done.tx_length;
obj->rx_buff.pos += p_event->data.done.rx_length;
/* Setup a new transfer if more data is pending. */
if ((obj->tx_buff.pos < obj->tx_buff.length) || (obj->rx_buff.pos < obj->tx_buff.length)) {
/* Initiate SPI transfer. */
ret_code_t result = spi_master_transfer_async_continue(obj);
/* Abort if transfer wasn't accepted. */
if (result != NRF_SUCCESS) {
/* Signal callback handler that transfer failed. */
signal_error = true;
}
} else {
/* Signal callback handler that transfer is complete. */
signal_complete = true;
}
} else {
/* Unexpected event, signal callback handler that transfer failed. */
signal_error = true;
}
/* Transfer complete, signal success if mask is set.*/
if (signal_complete) {
/* Signal success if event mask matches and event handler is set. */
if ((spi_inst->mask & SPI_EVENT_COMPLETE) && spi_inst->handler) {
/* Cast handler to callback function pointer. */
void (*callback)(void) = (void (*)(void)) spi_inst->handler;
/* Reset object. */
spi_inst->handler = 0;
spi_inst->update = true;
/* Store event value so it can be read back. */
spi_inst->event = SPI_EVENT_COMPLETE;
/* Signal callback handler. */
callback();
}
/* Transfer failed, signal error if mask is set. */
} else if (signal_error) {
/* Signal error if event mask matches and event handler is set. */
if ((spi_inst->mask & SPI_EVENT_ERROR) && spi_inst->handler) {
/* Cast handler to callback function pointer. */
void (*callback)(void) = (void (*)(void)) spi_inst->handler;
/* Reset object. */
spi_inst->handler = 0;
spi_inst->update = true;
/* Store event value so it can be read back. */
spi_inst->event = SPI_EVENT_ERROR;
/* Signal callback handler. */
callback();
}
}
/* Transfer completed one way or another. Set chip select manually if defined. */
if (signal_complete || signal_error) {
if (spi_inst->cs != NC) {
nrf_gpio_pin_set(spi_inst->cs);
}
}
}
/** Begin the SPI transfer. Buffer pointers and lengths are specified in tx_buff and rx_buff
*
* Parameter obj The SPI object that holds the transfer information
* Parameter tx The transmit buffer
* Parameter tx_length The number of bytes to transmit
* Parameter rx The receive buffer
* Parameter rx_length The number of bytes to receive
* Parameter bit_width The bit width of buffer words
* Parameter event The logical OR of events to be registered
* Parameter handler SPI interrupt handler
* Parameter hint A suggestion for how to use DMA with this transfer
*/
void spi_master_transfer(spi_t *obj,
const void *tx,
size_t tx_length,
void *rx,
size_t rx_length,
uint8_t bit_width,
uint32_t handler,
uint32_t mask,
DMAUsage hint)
{
/* SPI peripheral only supports 8 bit transfers. */
MBED_ASSERT(bit_width == 8);
/* Setup buffers for transfer. */
struct buffer_s *buffer_pointer;
buffer_pointer = &obj->tx_buff;
buffer_pointer->buffer = (void*) tx;
buffer_pointer->length = tx_length;
buffer_pointer->pos = 0;
buffer_pointer->width = 8;
buffer_pointer = &obj->rx_buff;
buffer_pointer->buffer = rx;
buffer_pointer->length = rx_length;
buffer_pointer->pos = 0;
buffer_pointer->width = 8;
/* Save event handler and event mask so they can be called from interrupt handler. */
struct spi_s *spi_inst = &obj->spi;
spi_inst->handler = handler;
spi_inst->mask = mask;
/* Clear event flag. */
spi_inst->event = 0;
/* Force reconfiguration. */
spi_inst->update = true;
/* Configure peripheral if necessary. */
spi_configure_driver_instance(obj);
/* Manually clear chip select pin if defined. */
if (spi_inst->cs != NC) {
nrf_gpio_pin_clear(spi_inst->cs);
}
/* Initiate SPI transfer. */
ret_code_t result = spi_master_transfer_async_continue(obj);
/* Signal error if event mask matches and event handler is set. */
if ((result != NRF_SUCCESS) && (mask & SPI_EVENT_ERROR) && handler) {
/* Cast handler to callback function pointer. */
void (*callback)(void) = (void (*)(void)) handler;
/* Reset object. */
spi_inst->handler = 0;
spi_inst->update = true;
/* Store event value so it can be read back. */
spi_inst->event = SPI_EVENT_ERROR;
/* Signal callback handler. */
callback();
}
}
/** The asynchronous IRQ handler
*
* Reads the received values out of the RX FIFO, writes values into the TX FIFO and checks for transfer termination
* conditions, such as buffer overflows or transfer complete.
* Parameter obj The SPI object that holds the transfer information
* Return Event flags if a transfer termination condition was met; otherwise 0.
*/
uint32_t spi_irq_handler_asynch(spi_t *obj)
{
/* Return latest event. */
return obj->spi.event;
}
/** Attempts to determine if the SPI peripheral is already in use
*
* If a temporary DMA channel has been allocated, peripheral is in use.
* If a permanent DMA channel has been allocated, check if the DMA channel is in use. If not, proceed as though no DMA
* channel were allocated.
* If no DMA channel is allocated, check whether tx and rx buffers have been assigned. For each assigned buffer, check
* if the corresponding buffer position is less than the buffer length. If buffers do not indicate activity, check if
* there are any bytes in the FIFOs.
* Parameter obj The SPI object to check for activity
* Return Non-zero if the SPI port is active or zero if it is not.
*/
uint8_t spi_active(spi_t *obj)
{
/* Callback handler is non-zero when a transfer is in progress. */
return (obj->spi.handler != 0);
}
/** Abort an SPI transfer
*
* Parameter obj The SPI peripheral to stop
*/
void spi_abort_asynch(spi_t *obj)
{
int instance = obj->spi.instance;
/* Abort transfer. */
nrf_drv_spi_abort(&nordic_nrf5_spi_instance[instance]);
/* Force reconfiguration. */
object_owner_spi2c_set(instance, NULL);
}
#endif // DEVICE_SPI_ASYNCH
#endif // DEVICE_SPI