mbed-os/targets/TARGET_WIZNET/TARGET_W7500x/serial_api.c

414 lines
11 KiB
C

/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2015 WIZnet Co.,Ltd. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of ARM Limited nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "mbed_assert.h"
#include "serial_api.h"
#if DEVICE_SERIAL
#include "cmsis.h"
#include "pinmap.h"
#include <string.h>
#include "PeripheralPins.h"
#include "W7500x_uart.h"
#define UART_NUM (3)
static uint32_t serial_irq_ids[UART_NUM] = {0, 0, 0};
static uart_irq_handler irq_handler;
static UART_TypeDef *UART;
UART_InitTypeDef UART_InitStructure;
int stdio_uart_inited = 0;
serial_t stdio_uart;
static void init_uart(serial_t *obj)
{
if(obj->index == 2) // For UART2, It is simple UART.
{
SystemCoreClockUpdate();
//S_UART_Init(obj->baudrate);
S_UART_SetCTRL((S_UART_CTRL_RX_EN|S_UART_CTRL_TX_EN), DISABLE);
S_UART_SetBaud(obj->baudrate);
if(obj->pin_rx == NC)
{
S_UART_SetCTRL(S_UART_CTRL_TX_EN, ENABLE);
}
else if(obj->pin_tx == NC)
{
S_UART_SetCTRL(S_UART_CTRL_RX_EN, ENABLE);
}
else
{
S_UART_SetCTRL((S_UART_CTRL_TX_EN|S_UART_CTRL_RX_EN),ENABLE);
}
}
else // For UART0 and UART1.
{
UART = (UART_TypeDef *)(obj->uart);
UART_InitStructure.UART_BaudRate = obj->baudrate;
UART_InitStructure.UART_WordLength = obj->databits;
UART_InitStructure.UART_StopBits = obj->stopbits;
UART_InitStructure.UART_Parity = obj->parity;
UART_InitStructure.UART_HardwareFlowControl = UART_HardwareFlowControl_None;
if (obj->pin_rx == NC) {
UART_InitStructure.UART_Mode = UART_Mode_Tx;
} else if (obj->pin_tx == NC) {
UART_InitStructure.UART_Mode = UART_Mode_Rx;
} else {
UART_InitStructure.UART_Mode = (UART_Mode_Rx | UART_Mode_Tx);
}
UART_Init(UART,&UART_InitStructure);
}
}
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
// Determine the UART to use (UART_1, UART_2, ...)
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
// Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
obj->uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT(obj->uart != (UARTName)NC);
// Enable USART clock
if (obj->uart == UART_0) {
obj->index = 0;
}
if (obj->uart == UART_1) {
obj->index = 1;
}
if (obj->uart == UART_2) {
obj->index = 2;
}
// Configure the UART pins
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
if (tx != NC) {
pin_mode(tx, PullUp);
}
if (rx != NC) {
pin_mode(rx, PullUp);
}
// Configure UART
obj->baudrate = 9600;
obj->databits = UART_WordLength_8b;
obj->stopbits = UART_StopBits_1;
obj->parity = UART_Parity_No;
obj->pin_tx = tx;
obj->pin_rx = rx;
init_uart(obj);
// For stdio management
if (obj->uart == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj)
{
// Reset UART and disable clock
if (obj->uart == UART_0) {
}
if (obj->uart == UART_1) {
}
if (obj->uart == UART_2) {
}
serial_irq_ids[obj->index] = 0;
}
void serial_baud(serial_t *obj, int baudrate)
{
obj->baudrate = baudrate;
init_uart(obj);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
if (data_bits == 7) {
obj->databits = UART_WordLength_7b;
} else {
obj->databits = UART_WordLength_8b;
}
switch (parity) {
case ParityOdd:
case ParityForced0:
obj->parity = UART_Parity_Odd;
break;
case ParityEven:
case ParityForced1:
obj->parity = UART_Parity_Even;
break;
default: // ParityNone
obj->parity = UART_Parity_No;
break;
}
if (stop_bits == 2) {
obj->stopbits = UART_StopBits_2;
} else {
obj->stopbits = UART_StopBits_1;
}
init_uart(obj);
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static void uart_irq(UARTName name, int id)
{
UART = (UART_TypeDef *)name;
if (serial_irq_ids[id] != 0) {
if( UART_GetITStatus(UART,UART_IT_FLAG_TXI) != RESET ){
irq_handler(serial_irq_ids[id], TxIrq);
UART_ClearITPendingBit(UART,UART_IT_FLAG_TXI);
}
if( UART_GetITStatus(UART,UART_IT_FLAG_RXI) != RESET ){
irq_handler(serial_irq_ids[id], RxIrq);
}
}
}
static void uart2_irq()
{
if(serial_irq_ids[2] != 0){
if( S_UART_GetITStatus(S_UART_INTSTATUS_TXI) != RESET ){
S_UART_ClearITPendingBit(S_UART_INTSTATUS_TXI);
irq_handler(serial_irq_ids[2], TxIrq);
}
if( S_UART_GetITStatus(S_UART_INTSTATUS_RXI) != RESET ) {
S_UART_ClearITPendingBit(S_UART_INTSTATUS_RXI);
irq_handler(serial_irq_ids[2], RxIrq);
}
}
}
#ifdef __cplusplus
extern "C"{
#endif
void UART0_Handler()
{
uart_irq(UART_0, 0);
}
void UART1_Handler()
{
uart_irq(UART_1, 1);
}
void UART2_Handler()
{
uart2_irq();
}
#ifdef __cplusplus
}
#endif
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
IRQn_Type irq_n = (IRQn_Type)0;
if (obj->uart == UART_2)
{
irq_n = UART2_IRQn;
if (enable){
if (irq == RxIrq){
S_UART_ITConfig(S_UART_CTRL_RXI,ENABLE);
} else {
S_UART_ITConfig(S_UART_CTRL_TXI,ENABLE);
}
NVIC_ClearPendingIRQ(irq_n);
NVIC_EnableIRQ(irq_n);
} else { // disable
S_UART_ITConfig((S_UART_CTRL_RXI|S_UART_CTRL_TXI),DISABLE);
NVIC_DisableIRQ(irq_n);
}
}
else
{
UART = (UART_TypeDef *)(obj->uart);
if (obj->uart == UART_0) {
irq_n = UART0_IRQn;
}
if (obj->uart == UART_1) {
irq_n = UART1_IRQn;
}
if (enable) {
if (irq == RxIrq) {
UART_ITConfig(UART,UART_IT_FLAG_RXI,ENABLE);
} else { // TxIrq
UART_ITConfig(UART,UART_IT_FLAG_TXI,ENABLE);
}
NVIC_ClearPendingIRQ(irq_n);
NVIC_EnableIRQ(irq_n);
} else { // disable
UART_ITConfig(UART,(UART_IT_FLAG_RXI|UART_IT_FLAG_TXI),DISABLE);
NVIC_DisableIRQ(irq_n);
}
}
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj)
{
if (obj->uart == UART_2)
{
S_UART_TypeDef *uart = (S_UART_TypeDef *)(obj->uart);
while( (uart->STATE & S_UART_STATE_RX_BUF_FULL) == 0 );
return (uint16_t)(uart->DATA);
}
else
{
UART_TypeDef *uart = (UART_TypeDef *)(obj->uart);
while(uart->FR & UART_FR_RXFE);
return (uart->DR & 0xFF);
}
}
void serial_putc(serial_t *obj, int c)
{
if (obj->uart == UART_2)
{
S_UART_TypeDef *uart = (S_UART_TypeDef *)(obj->uart);
while(uart->STATE & S_UART_STATE_TX_BUF_FULL);
uart->DATA = (uint32_t)(c & (uint16_t)0xFF);
}
else
{
UART_TypeDef *uart = (UART_TypeDef *)(obj->uart);
uart->DR = (uint32_t)(c & (uint16_t)0xFF);
while(uart->FR & UART_FR_BUSY);
}
}
int serial_readable(serial_t *obj)
{
int status;
if (obj->uart == UART_2)
{
S_UART_TypeDef *uart = (S_UART_TypeDef *)(obj->uart);
status = ((uart->STATE & S_UART_STATE_RX_BUF_FULL) ? 1 : 0);
}
else
{
UART_TypeDef *uart = (UART_TypeDef *)(obj->uart);
// Check if data is received
status = ((uart->FR & UART_FR_RXFE) ? 0: 1);
}
return status;
}
int serial_writable(serial_t *obj)
{
int status;
if (obj->uart == UART_2)
{
S_UART_TypeDef *uart = (S_UART_TypeDef *)(obj->uart);
status = ((uart->STATE & S_UART_STATE_TX_BUF_FULL) ? 0 : 1);
}
else
{
UART_TypeDef *uart = (UART_TypeDef *)(obj->uart);
// Check if data is transmitted
status = ((uart->FR & UART_FR_BUSY) ? 0: 1);
}
return status;
}
void serial_clear(serial_t *obj)
{
// UartHandle.Instance = (USART_TypeDef *)(obj->uart);
// __HAL_UART_CLEAR_IT(&UartHandle, UART_FLAG_TC);
// __HAL_UART_SEND_REQ(&UartHandle, UART_RXDATA_FLUSH_REQUEST);
}
void serial_pinout_tx(PinName tx)
{
//pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj)
{
// [TODO]
}
void serial_break_clear(serial_t *obj)
{
// [TODO]
}
#endif