mbed-os/features/mbedtls/targets/TARGET_STM/aes_alt.c

441 lines
14 KiB
C

/*
* Hardware aes implementation for STM32F4 STM32F7 and STM32L4 families
*******************************************************************************
* Copyright (c) 2017, STMicroelectronics
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <string.h>
#include "mbedtls/aes.h"
#if defined(MBEDTLS_AES_ALT)
#if defined(TARGET_STM32L486xG) || defined (TARGET_STM32L443xC)
//the following defines are provided to maintain compatibility between STM32 families
#define __HAL_RCC_CRYP_CLK_ENABLE __HAL_RCC_AES_CLK_ENABLE
#define __HAL_RCC_CRYP_FORCE_RESET __HAL_RCC_AES_FORCE_RESET
#define __HAL_RCC_CRYP_RELEASE_RESET __HAL_RCC_AES_RELEASE_RESET
#define CRYP AES
#endif
static int aes_set_key(mbedtls_aes_context *ctx, const unsigned char *key, unsigned int keybits)
{
switch (keybits) {
case 128:
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_128B;
memcpy(ctx->aes_key, key, 16);
break;
case 192:
#if defined (TARGET_STM32L486xG) || defined (TARGET_STM32L443xC)
return (MBEDTLS_ERR_AES_INVALID_KEY_LENGTH);
#else
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_192B;
memcpy(ctx->aes_key, key, 24);
break;
#endif
case 256:
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_256B;
memcpy(ctx->aes_key, key, 32);
break;
default :
return (MBEDTLS_ERR_AES_INVALID_KEY_LENGTH);
}
/* Deinitializes the CRYP peripheral */
if (HAL_CRYP_DeInit(&ctx->hcryp_aes) == HAL_ERROR) {
return (HAL_ERROR);
}
ctx->hcryp_aes.Init.DataType = CRYP_DATATYPE_8B;
ctx->hcryp_aes.Instance = CRYP;
/* Enable CRYP clock */
__HAL_RCC_CRYP_CLK_ENABLE();
ctx->hcryp_aes.Init.pKey = ctx->aes_key;
#if defined (TARGET_STM32L486xG) || defined (TARGET_STM32L443xC)
ctx->hcryp_aes.Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
#endif
if (HAL_CRYP_Init(&ctx->hcryp_aes) == HAL_ERROR) {
return (HAL_ERROR);
}
/* allow multi-instance of CRYP use: save context for CRYP HW module CR */
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
return (0);
}
/* Implementation that should never be optimized out by the compiler */
static void mbedtls_zeroize(void *v, size_t n)
{
volatile unsigned char *p = (unsigned char *)v;
while (n--) {
*p++ = 0;
}
}
void mbedtls_aes_init(mbedtls_aes_context *ctx)
{
memset(ctx, 0, sizeof(mbedtls_aes_context));
}
void mbedtls_aes_free(mbedtls_aes_context *ctx)
{
if (ctx == NULL) {
return;
}
/* Force the CRYP Periheral Clock Reset */
__HAL_RCC_CRYP_FORCE_RESET();
/* Release the CRYP Periheral Clock Reset */
__HAL_RCC_CRYP_RELEASE_RESET();
mbedtls_zeroize(ctx, sizeof(mbedtls_aes_context));
}
int mbedtls_aes_setkey_enc(mbedtls_aes_context *ctx, const unsigned char *key,
unsigned int keybits)
{
int ret_val = 0;
ret_val = aes_set_key(ctx, key, keybits);
return (ret_val);
}
int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx, const unsigned char *key,
unsigned int keybits)
{
int ret_val = 0;
ret_val = aes_set_key(ctx, key, keybits);
return (ret_val);
}
int mbedtls_aes_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
/* allow multi-instance of CRYP use: restore context for CRYP hw module */
ctx->hcryp_aes.Instance->CR = ctx->ctx_save_cr;
ctx->hcryp_aes.Phase = HAL_CRYP_PHASE_READY;
ctx->hcryp_aes.Init.DataType = CRYP_DATATYPE_8B;
ctx->hcryp_aes.Init.pKey = ctx->aes_key;
if (mode == MBEDTLS_AES_DECRYPT) { /* AES decryption */
if (mbedtls_internal_aes_decrypt(ctx, input, output)) {
return ST_ERR_AES_BUSY;
}
} else { /* AES encryption */
if (mbedtls_internal_aes_encrypt(ctx, input, output)) {
return ST_ERR_AES_BUSY;
}
}
/* allow multi-instance of CRYP use: save context for CRYP HW module CR */
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
return (0);
}
#if defined(MBEDTLS_CIPHER_MODE_CBC)
#if defined (TARGET_STM32L486xG) || defined (TARGET_STM32L443xC)
static int st_cbc_restore_context(mbedtls_aes_context *ctx)
{
uint32_t tickstart;
tickstart = HAL_GetTick();
while ((ctx->hcryp_aes.Instance->SR & AES_SR_BUSY) != 0) {
if ((HAL_GetTick() - tickstart) > ST_AES_TIMEOUT) {
return ST_ERR_AES_BUSY; // timeout: CRYP processor is busy
}
}
/* allow multi-instance of CRYP use: restore context for CRYP hw module */
ctx->hcryp_aes.Instance->CR = ctx->ctx_save_cr;
return 0;
}
static int st_hal_cryp_cbc(mbedtls_aes_context *ctx, uint32_t opmode, size_t length,
unsigned char iv[16], uint8_t *input, uint8_t *output)
{
ctx->hcryp_aes.Init.pInitVect = &iv[0]; // used in process, not in the init
/* At this moment only, we know we have CBC mode: Re-initialize AES
IP with proper parameters and apply key and IV for multi context usecase */
if (HAL_CRYP_DeInit(&ctx->hcryp_aes) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
ctx->hcryp_aes.Init.OperatingMode = opmode;
ctx->hcryp_aes.Init.ChainingMode = CRYP_CHAINMODE_AES_CBC;
ctx->hcryp_aes.Init.KeyWriteFlag = CRYP_KEY_WRITE_ENABLE;
if (HAL_CRYP_Init(&ctx->hcryp_aes) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
if (HAL_CRYPEx_AES(&ctx->hcryp_aes, input, length, output, 10) != 0) {
return ST_ERR_AES_BUSY;
}
return 0;
}
#else /* STM32F4 and STM32F7 */
static int st_cbc_restore_context(mbedtls_aes_context *ctx)
{
/* allow multi-instance of CRYP use: restore context for CRYP hw module */
ctx->hcryp_aes.Instance->CR = ctx->ctx_save_cr;
/* Re-initialize AES processor with proper parameters
and (re-)apply key and IV for multi context usecases */
if (HAL_CRYP_DeInit(&ctx->hcryp_aes) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
if (HAL_CRYP_Init(&ctx->hcryp_aes) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
return 0;
}
#endif /* TARGET_STM32L486xG || TARGET_STM32L443xC */
int mbedtls_aes_crypt_cbc(mbedtls_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output)
{
uint32_t tickstart;
uint32_t *iv_ptr = (uint32_t *)&iv[0];
if (length % 16) {
return (MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH);
}
ctx->hcryp_aes.Init.pInitVect = &iv[0];
if (st_cbc_restore_context(ctx) != 0) {
return (ST_ERR_AES_BUSY);
}
#if defined (TARGET_STM32L486xG) || defined (TARGET_STM32L443xC)
if (mode == MBEDTLS_AES_DECRYPT) {
if (st_hal_cryp_cbc(ctx, CRYP_ALGOMODE_KEYDERIVATION_DECRYPT, length, iv, (uint8_t *)input, (uint8_t *)output) != 0) {
return ST_ERR_AES_BUSY;
}
/* Save the internal IV vector for multi context purpose */
tickstart = HAL_GetTick();
while ((ctx->hcryp_aes.Instance->SR & AES_SR_BUSY) != 0) {
if ((HAL_GetTick() - tickstart) > ST_AES_TIMEOUT) {
return ST_ERR_AES_BUSY; // timeout: CRYP processor is busy
}
}
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR; // save here before overwritten
ctx->hcryp_aes.Instance->CR &= ~AES_CR_EN;
*iv_ptr++ = ctx->hcryp_aes.Instance->IVR3;
*iv_ptr++ = ctx->hcryp_aes.Instance->IVR2;
*iv_ptr++ = ctx->hcryp_aes.Instance->IVR1;
*iv_ptr++ = ctx->hcryp_aes.Instance->IVR0;
} else {
if (st_hal_cryp_cbc(ctx, CRYP_ALGOMODE_ENCRYPT, length, iv, (uint8_t *)input, (uint8_t *)output) != 0) {
return ST_ERR_AES_BUSY;
}
memcpy(iv, output, 16); /* current output is the IV vector for the next call */
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
}
#else
if (mode == MBEDTLS_AES_DECRYPT) {
if (HAL_CRYP_AESCBC_Decrypt(&ctx->hcryp_aes, (uint8_t *)input, length, (uint8_t *)output, 10) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
/* Save the internal IV vector for multi context purpose */
tickstart = HAL_GetTick();
while ((ctx->hcryp_aes.Instance->SR & (CRYP_SR_IFEM | CRYP_SR_OFNE | CRYP_SR_BUSY)) != CRYP_SR_IFEM) {
if ((HAL_GetTick() - tickstart) > ST_AES_TIMEOUT) {
return ST_ERR_AES_BUSY; // timeout: CRYP processor is busy
}
}
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR; // save here before overwritten
ctx->hcryp_aes.Instance->CR &= ~CRYP_CR_CRYPEN;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV0LR;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV0RR;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV1LR;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV1RR;
} else {
if (HAL_CRYP_AESCBC_Encrypt(&ctx->hcryp_aes, (uint8_t *)input, length, (uint8_t *)output, 10) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
memcpy(iv, output, 16); /* current output is the IV vector for the next call */
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
}
#endif
return 0;
}
#endif /* MBEDTLS_CIPHER_MODE_CBC */
#if defined(MBEDTLS_CIPHER_MODE_CFB)
int mbedtls_aes_crypt_cfb128(mbedtls_aes_context *ctx,
int mode,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output)
{
int c;
size_t n = *iv_off;
if (mode == MBEDTLS_AES_DECRYPT) {
while (length--) {
if (n == 0)
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
return ST_ERR_AES_BUSY;
}
c = *input++;
*output++ = (unsigned char)(c ^ iv[n]);
iv[n] = (unsigned char) c;
n = (n + 1) & 0x0F;
}
} else {
while (length--) {
if (n == 0)
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
return ST_ERR_AES_BUSY;
}
iv[n] = *output++ = (unsigned char)(iv[n] ^ *input++);
n = (n + 1) & 0x0F;
}
}
*iv_off = n;
return (0);
}
int mbedtls_aes_crypt_cfb8(mbedtls_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output)
{
unsigned char c;
unsigned char ov[17];
while (length--) {
memcpy(ov, iv, 16);
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
return ST_ERR_AES_BUSY;
}
if (mode == MBEDTLS_AES_DECRYPT) {
ov[16] = *input;
}
c = *output++ = (unsigned char)(iv[0] ^ *input++);
if (mode == MBEDTLS_AES_ENCRYPT) {
ov[16] = c;
}
memcpy(iv, ov + 1, 16);
}
return (0);
}
#endif /*MBEDTLS_CIPHER_MODE_CFB */
#if defined(MBEDTLS_CIPHER_MODE_CTR)
int mbedtls_aes_crypt_ctr(mbedtls_aes_context *ctx,
size_t length,
size_t *nc_off,
unsigned char nonce_counter[16],
unsigned char stream_block[16],
const unsigned char *input,
unsigned char *output)
{
int c, i;
size_t n = *nc_off;
while (length--) {
if (n == 0) {
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, nonce_counter, stream_block) != 0) {
return ST_ERR_AES_BUSY;
}
for (i = 16; i > 0; i--)
if (++nonce_counter[i - 1] != 0) {
break;
}
}
c = *input++;
*output++ = (unsigned char)(c ^ stream_block[n]);
n = (n + 1) & 0x0F;
}
*nc_off = n;
return (0);
}
#endif /* MBEDTLS_CIPHER_MODE_CTR */
int mbedtls_internal_aes_encrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
if (HAL_CRYP_AESECB_Encrypt(&ctx->hcryp_aes, (uint8_t *)input, 16, (uint8_t *)output, 10) != HAL_OK) {
// error found
return ST_ERR_AES_BUSY;
}
return 0;
}
int mbedtls_internal_aes_decrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
if (HAL_CRYP_AESECB_Decrypt(&ctx->hcryp_aes, (uint8_t *)input, 16, (uint8_t *)output, 10) != HAL_OK) {
// error found
return ST_ERR_AES_BUSY;
}
return 0;
}
#if !defined(MBEDTLS_DEPRECATED_REMOVED)
void mbedtls_aes_encrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
mbedtls_internal_aes_encrypt(ctx, input, output);
}
void mbedtls_aes_decrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
mbedtls_internal_aes_decrypt(ctx, input, output);
}
#endif /* MBEDTLS_DEPRECATED_REMOVED */
#endif /*MBEDTLS_AES_ALT*/