mbed-os/targets/TARGET_Freescale/TARGET_KLXX/TARGET_KL26Z/spi_api.c

242 lines
6.4 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "spi_api.h"
#include <math.h>
#include "cmsis.h"
#include "pinmap.h"
static const PinMap PinMap_SPI_SCLK[] = {
{PTA15, SPI_0, 2},
{PTB9, SPI_1, 2},
{PTB11, SPI_1, 2},
{PTC5, SPI_0, 2},
{PTD1, SPI_0, 2},
{PTD5, SPI_1, 2},
{PTE2, SPI_1, 2},
{PTE17, SPI_0, 2},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MOSI[] = {
{PTA16, SPI_0, 2},
{PTA17, SPI_0, 5},
{PTB16, SPI_1, 2},
{PTB17, SPI_1, 5},
{PTC6, SPI_0, 2},
{PTC7, SPI_0, 5},
{PTD2, SPI_0, 2},
{PTD3, SPI_0, 5},
{PTD6, SPI_1, 2},
{PTD7, SPI_1, 5},
{PTE1, SPI_1, 2},
{PTE3, SPI_1, 5},
{PTE18, SPI_0, 2},
{PTE19, SPI_0, 5},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{PTA16, SPI_0, 5},
{PTA17, SPI_0, 2},
{PTB16, SPI_1, 5},
{PTB17, SPI_1, 2},
{PTC6, SPI_0, 5},
{PTC7, SPI_0, 2},
{PTD2, SPI_0, 5},
{PTD3, SPI_0, 2},
{PTD6, SPI_1, 5},
{PTD7, SPI_1, 2},
{PTE1, SPI_1, 5},
{PTE3, SPI_1, 2},
{PTE18, SPI_0, 5},
{PTE19, SPI_0, 2},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{PTA14, SPI_0, 2},
{PTB10, SPI_1, 2},
{PTC4, SPI_0, 2},
{PTD0, SPI_0, 2},
{PTD4, SPI_1, 2},
{PTE4, SPI_1, 2},
{PTE16, SPI_0, 2},
{NC , NC , 0}
};
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
// determine the SPI to use
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj->spi = (SPI_Type*)pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)obj->spi != NC);
// enable power and clocking
switch ((int)obj->spi) {
case SPI_0: SIM->SCGC5 |= 1 << 13; SIM->SCGC4 |= 1 << 22; break;
case SPI_1: SIM->SCGC5 |= 1 << 13; SIM->SCGC4 |= 1 << 23; break;
}
// enable SPI
obj->spi->C1 |= SPI_C1_SPE_MASK;
obj->spi->C2 &= ~SPI_C2_SPIMODE_MASK; //8bit
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if (ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
}
void spi_free(spi_t *obj) {
// [TODO]
}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
MBED_ASSERT((bits == 8) || (bits == 16));
MBED_ASSERT((mode >= 0) && (mode <= 3));
uint8_t polarity = (mode & 0x2) ? 1 : 0;
uint8_t phase = (mode & 0x1) ? 1 : 0;
uint8_t c1_data = ((!slave) << 4) | (polarity << 3) | (phase << 2);
// clear MSTR, CPOL and CPHA bits
obj->spi->C1 &= ~(0x7 << 2);
// write new value
obj->spi->C1 |= c1_data;
if (bits == 8) {
obj->spi->C2 &= ~SPI_C2_SPIMODE_MASK;
} else {
obj->spi->C2 |= SPI_C2_SPIMODE_MASK;
}
}
void spi_frequency(spi_t *obj, int hz) {
uint32_t error = 0;
uint32_t p_error = 0xffffffff;
uint32_t ref = 0;
uint8_t spr = 0;
uint8_t ref_spr = 0;
uint8_t ref_prescaler = 0;
// bus clk
uint32_t PCLK = SystemCoreClock / (((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV4_MASK) >> SIM_CLKDIV1_OUTDIV4_SHIFT) + 1);
uint8_t prescaler = 1;
uint8_t divisor = 2;
for (prescaler = 1; prescaler <= 8; prescaler++) {
divisor = 2;
for (spr = 0; spr <= 8; spr++, divisor *= 2) {
ref = PCLK / (prescaler*divisor);
if (ref > (uint32_t)hz)
continue;
error = hz - ref;
if (error < p_error) {
ref_spr = spr;
ref_prescaler = prescaler - 1;
p_error = error;
}
}
}
// set SPPR and SPR
obj->spi->BR = ((ref_prescaler & 0x7) << 4) | (ref_spr & 0xf);
}
static inline int spi_writeable(spi_t * obj) {
return (obj->spi->S & SPI_S_SPTEF_MASK) ? 1 : 0;
}
static inline int spi_readable(spi_t * obj) {
return (obj->spi->S & SPI_S_SPRF_MASK) ? 1 : 0;
}
int spi_master_write(spi_t *obj, int value) {
int ret;
if (obj->spi->C2 & SPI_C2_SPIMODE_MASK) {
// 16bit
while(!spi_writeable(obj));
obj->spi->DL = (value & 0xff);
obj->spi->DH = ((value >> 8) & 0xff);
// wait rx buffer full
while (!spi_readable(obj));
ret = obj->spi->DH;
ret = (ret << 8) | obj->spi->DL;
} else {
//8bit
while(!spi_writeable(obj));
obj->spi->DL = (value & 0xff);
// wait rx buffer full
while (!spi_readable(obj));
ret = (obj->spi->DL & 0xff);
}
return ret;
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill) {
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
int spi_slave_receive(spi_t *obj) {
return spi_readable(obj);
}
int spi_slave_read(spi_t *obj) {
int ret;
if (obj->spi->C2 & SPI_C2_SPIMODE_MASK) {
ret = obj->spi->DH;
ret = ((ret << 8) | obj->spi->DL);
} else {
ret = obj->spi->DL;
}
return ret;
}
void spi_slave_write(spi_t *obj, int value) {
while (!spi_writeable(obj));
if (obj->spi->C2 & SPI_C2_SPIMODE_MASK) {
obj->spi->DL = (value & 0xff);
obj->spi->DH = ((value >> 8) & 0xff);
} else {
obj->spi->DL = value;
}
}