mbed-os/targets/TARGET_TOSHIBA/TARGET_TMPM46B/spi_api.c

560 lines
14 KiB
C

/* mbed Microcontroller Library
*******************************************************************************
* (C)Copyright TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION 2017 All rights reserved
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "spi_api.h"
#include "mbed_error.h"
#include "pinmap.h"
#include "tmpm46b_ssp.h"
#define TMPM46B_SPI_2_FMAX 20000000
#define TMPM46B_SPI_FMAX 10000000
#define SPI_TRANSFER_STATE_IDLE (0U)
#define SPI_TRANSFER_STATE_BUSY (1U)
#if DEVICE_SPI_ASYNCH
#define SPI_S(obj) (( struct spi_s *)(&(obj->spi)))
#else
#define SPI_S(obj) (( struct spi_s *)(obj))
#endif
static const PinMap PinMap_SPI_SCLK[] = {
{PK4, SPI_0, PIN_DATA(2, 1)},
{PF3, SPI_1, PIN_DATA(5, 1)},
{PD3, SPI_2, PIN_DATA(1, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SLAVE_SCLK[] = {
{PK4, SPI_0, PIN_DATA(2, 0)},
{PF3, SPI_1, PIN_DATA(5, 0)},
{PD3, SPI_2, PIN_DATA(1, 0)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_MOSI[] = {
{PK3, SPI_0, PIN_DATA(2, 1)},
{PF4, SPI_1, PIN_DATA(5, 1)},
{PD2, SPI_2, PIN_DATA(1, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{PK2, SPI_0, PIN_DATA(2, 0)},
{PF5, SPI_1, PIN_DATA(5, 0)},
{PD1, SPI_2, PIN_DATA(1, 0)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{PK1, SPI_0, PIN_DATA(2, 2)},
{PF6, SPI_1, PIN_DATA(5, 2)},
{PD0, SPI_2, PIN_DATA(1, 2)},
{NC, NC, 0}
};
#if DEVICE_SPI_ASYNCH
static inline void state_idle(struct spi_s *obj_s);
#endif
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
struct spi_s *obj_s = SPI_S(obj);
SSP_InitTypeDef config;
// Check pin parameters
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj_s->module = (SPIName)pinmap_merge(spi_data, spi_sclk);
obj_s->module = (SPIName)pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)obj_s->module!= NC);
obj_s->clk_pin = sclk;
#if DEVICE_SPI_ASYNCH
obj_s->state = SPI_TRANSFER_STATE_IDLE;
#endif
// Identify SPI module to use
switch ((int)obj_s->module) {
case SPI_0:
obj_s->irqn = INTSSP0_IRQn;
obj_s->spi = TSB_SSP0;
break;
case SPI_1:
obj_s->irqn = INTSSP1_IRQn;
obj_s->spi = TSB_SSP1;
break;
case SPI_2:
obj_s->irqn = INTSSP2_IRQn;
obj_s->spi = TSB_SSP2;
break;
default:
obj_s->spi= NULL;
obj_s->module = (SPIName)NC;
error("Cannot found SPI module corresponding with input pins.");
break;
}
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if (ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
// Declare Config
config.FrameFormat = SSP_FORMAT_SPI;
// bit_rate = Fsys / (clk_prescale * (clk_rate + 1))
config.PreScale = 48;
config.ClkRate = 0;
config.ClkPolarity = SSP_POLARITY_LOW;
config.ClkPhase = SSP_PHASE_FIRST_EDGE;
config.DataSize = 0x08;
obj_s->bits = config.DataSize;
config.Mode = SSP_MASTER;
SSP_Init(obj_s->spi, &config);
// Disable all interrupt
SSP_SetINTConfig(obj_s->spi, SSP_INTCFG_NONE);
SSP_Enable(obj_s->spi);
}
void spi_free(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
SSP_Disable(obj_s->spi);
obj_s->spi = NULL;
obj_s->module = (SPIName)NC;
}
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
struct spi_s *obj_s = SPI_S(obj);
TSB_SSP_TypeDef* spi;
MBED_ASSERT((slave == SSP_MASTER) || (slave == SSP_SLAVE));
spi = obj_s->spi;
SSP_Disable(spi);
if (slave) {
pinmap_pinout(obj_s->clk_pin, PinMap_SPI_SLAVE_SCLK);
SSP_SetMSMode(spi, SSP_SLAVE);
}
obj_s->bits = bits;
SSP_SetDataSize(spi, bits);
SSP_SetClkPolarity(spi, (SSP_ClkPolarity)(mode & 0x1));
SSP_SetClkPhase(spi, (SSP_ClkPhase)((mode >> 1) & 0x1));
SSP_Enable(spi);
}
void spi_frequency(spi_t *obj, int hz)
{
struct spi_s *obj_s = SPI_S(obj);
TSB_SSP_TypeDef* spi;
// Search Freq data
int fr_gear = 1;
int cur_hz = 1;
int32_t best_diff = TMPM46B_SPI_FMAX;
int best_cpsdvsr = 254;
int best_scr = 255;
int cur_cpsdvsr = 48;
int cur_scr = 0;
int32_t diff;
/* Assert Min frequency
Hz = Fsys / (CPSDVSR * (SCR + 1))
Domain value of CPSDVSR is an even number between 2 to 254
Domain value of SCR is a number between 0 to 255
Hz Min if CPSDVSR and SCR max (CPSDVSR = 254, SCR = 255)
*/
MBED_ASSERT((SystemCoreClock / 65024) <= (uint32_t)hz);
if (obj_s->module == SPI_2) {
MBED_ASSERT(hz <= TMPM46B_SPI_2_FMAX);
} else {
MBED_ASSERT(hz <= TMPM46B_SPI_FMAX); // Default value of SPI_0, SPI_1, SPI_2
}
spi = obj_s->spi;
fr_gear = SystemCoreClock / hz;
if (fr_gear < 48) {
cur_cpsdvsr = fr_gear;
}
while (best_diff != 0 && cur_cpsdvsr <= 254) {
cur_scr = fr_gear / cur_cpsdvsr - 1;
if (cur_scr < 0) {
break;
}
for (; cur_scr < 256; ++cur_scr) {
cur_hz = SystemCoreClock / (cur_cpsdvsr * (1 + cur_scr));
diff = cur_hz - hz;
if (diff < 0) {
diff = -diff;
}
if (diff < best_diff) {
best_cpsdvsr = cur_cpsdvsr;
best_scr = cur_scr;
best_diff = diff;
} else if (diff >= best_diff) {
break;
}
}
cur_cpsdvsr += 2;
}
SSP_Disable(spi);
// Set bit rate of SPI
SSP_SetClkPreScale(spi, (uint8_t)best_cpsdvsr, (uint8_t)best_scr);
SSP_Enable(spi);
}
static void spi_clear_FIFOs(TSB_SSP_TypeDef *spi)
{
SSP_FIFOState tx_buf_state, rx_buf_state;
do {
while (SSP_GetWorkState(spi) == BUSY);
// Get data from receive FIFO
SSP_GetRxData(spi);
// Check receive FIFO
rx_buf_state = SSP_GetFIFOState(spi, SSP_RX);
// Check transmit FIFO
tx_buf_state = SSP_GetFIFOState(spi, SSP_TX);
} while (rx_buf_state != SSP_FIFO_EMPTY || tx_buf_state != SSP_FIFO_EMPTY);
}
int spi_master_write(spi_t *obj, int value)
{
struct spi_s *obj_s = SPI_S(obj);
TSB_SSP_TypeDef* spi;
spi = obj_s->spi;
// Clear all data in transmit FIFO and receive FIFO
spi_clear_FIFOs(spi);
// Transmit data
SSP_SetTxData(spi, value);
// Wait for transmitting
while (SSP_GetWorkState(spi) == BUSY);
// Read received data
value = SSP_GetRxData(spi);
return value;
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill)
{
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
int spi_slave_receive(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
SSP_FIFOState rx_buf_state;
TSB_SSP_TypeDef* spi;
spi = obj_s->spi;
rx_buf_state = SSP_GetFIFOState(spi, SSP_RX);
if ((rx_buf_state == SSP_FIFO_NORMAL) || (rx_buf_state == SSP_FIFO_FULL)) {
return 1;
}
return 0;
}
int spi_slave_read(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
uint8_t ret_value = 0;
TSB_SSP_TypeDef* spi;
spi = obj_s->spi;
ret_value = SSP_GetRxData(spi);
SSP_Disable(spi);
return ret_value;
}
void spi_slave_write(spi_t *obj, int value)
{
struct spi_s *obj_s = SPI_S(obj);
TSB_SSP_TypeDef* spi;
spi = obj_s->spi;
SSP_SetTxData(spi, value);
SSP_Enable(spi);
}
int spi_busy(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
WorkState state;
state = SSP_GetWorkState(obj_s->spi);
return (state == BUSY);
}
uint8_t spi_get_module(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
return (uint8_t)(obj_s->module);
}
const PinMap *spi_master_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_master_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_master_clk_pinmap()
{
return PinMap_SPI_SCLK;
}
const PinMap *spi_master_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
const PinMap *spi_slave_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_slave_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_slave_clk_pinmap()
{
return PinMap_SPI_SCLK;
}
const PinMap *spi_slave_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
#ifdef DEVICE_SPI_ASYNCH
void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width,
uint32_t handler, uint32_t event, DMAUsage hint)
{
struct spi_s *obj_s = SPI_S(obj);
TSB_SSP_TypeDef* spi;
spi = obj_s->spi;
obj_s->event_mask = event | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
// check which use-case we have
bool use_tx = (tx != NULL && tx_length > 0);
bool use_rx = (rx != NULL && rx_length > 0);
// don't do anything, if the buffers aren't valid
if (!use_tx && !use_rx) {
return;
}
// copy the buffers to the SPI object
obj->tx_buff.buffer = (void *) tx;
obj->tx_buff.length = tx ? tx_length : 0;
obj->tx_buff.pos = 0;
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx ? rx_length : 0;
obj->rx_buff.pos = 0;
NVIC_SetVector(obj_s->irqn, (uint32_t)handler); //receive interrupt
NVIC_ClearPendingIRQ(obj_s->irqn);
obj_s->state = SPI_TRANSFER_STATE_BUSY;
SSP_SetINTConfig(spi, SSP_INTCFG_ALL);
if (use_tx) {
// Transmit first byte to enter into handler
SSP_SetTxData(spi, *(uint8_t *)(tx));
obj->tx_buff.pos++;
} else if (use_rx) {
//if RX only then transmit one dummy byte to enter into handler
SSP_SetTxData(spi, 0xFF);
}
SSP_Enable(spi);
NVIC_EnableIRQ(obj_s->irqn);
}
uint32_t spi_irq_handler_asynch(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
TSB_SSP_TypeDef* spi;
int event = 0;
SSP_INTState state = { 0U };
spi = obj_s->spi;
if (obj_s->state != SPI_TRANSFER_STATE_BUSY) {
event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
state_idle(obj_s);
return (event & obj_s->event_mask);
}
state = SSP_GetPostEnableINTState(spi);
if (state.Bit.TimeOut || state.Bit.Rx) {
if (obj->rx_buff.pos < obj->rx_buff.length) {
*((uint8_t *)obj->rx_buff.buffer + obj->rx_buff.pos) = (uint8_t)SSP_GetRxData(spi);
obj->rx_buff.pos++;
if ((obj->tx_buff.pos == obj->tx_buff.length) && (obj->rx_buff.pos < obj->rx_buff.length)) {
// transmit complete but receive pending - dummy write
SSP_SetTxData(spi, 0xFF);
}
} else {
//Receive complete - dummy read
uint8_t dummy = (uint8_t)SSP_GetRxData(spi);
(void)dummy;
}
}
if (state.Bit.Tx) {
if (obj->tx_buff.pos < obj->tx_buff.length) {
SSP_SetTxData(spi, (*((uint8_t *)obj->tx_buff.buffer + obj->tx_buff.pos) & 0xFF));
obj->tx_buff.pos++;
} else if (obj->rx_buff.pos == obj->rx_buff.length) {
// Tx and Rx complete
event = SPI_EVENT_COMPLETE | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
state_idle(obj_s);
}
}
if (state.Bit.OverRun) {
SSP_ClearINTFlag(spi, SSP_INTCFG_ALL);
event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
state_idle(obj_s);
}
return (event & obj_s->event_mask);
}
uint8_t spi_active(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
return (obj_s->state != SPI_TRANSFER_STATE_IDLE);
}
void spi_abort_asynch(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
SSP_InitTypeDef config;
state_idle(obj_s);
config.FrameFormat = SSP_FORMAT_SPI;
// bit_rate = Fsys / (clk_prescale * (clk_rate + 1))
config.PreScale = 48;
config.ClkRate = 0;
config.ClkPolarity = SSP_POLARITY_LOW;
config.ClkPhase = SSP_PHASE_FIRST_EDGE;
config.DataSize = obj_s->bits;
config.Mode = SSP_MASTER;
SSP_Init(obj_s->spi, &config);
SSP_Enable(obj_s->spi);
}
static inline void state_idle(struct spi_s *obj_s)
{
NVIC_DisableIRQ(obj_s->irqn);
NVIC_ClearPendingIRQ(obj_s->irqn);
obj_s->state = SPI_TRANSFER_STATE_IDLE;
//clean-up
spi_clear_FIFOs(obj_s->spi);
SSP_Disable(obj_s->spi);
SSP_ClearINTFlag(obj_s->spi, SSP_INTCFG_ALL);
}
#endif //DEVICE_SPI_ASYNCH