mbed-os/TESTS/events/timing/main.cpp

151 lines
3.6 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_events.h"
#include "mbed.h"
#include "rtos.h"
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include <cstdlib>
#include <cmath>
using namespace utest::v1;
#if !DEVICE_USTICKER
#error [NOT_SUPPORTED] test not supported
#endif
// Test delay
#ifndef TEST_EVENTS_TIMING_TIME
#define TEST_EVENTS_TIMING_TIME 20000
#endif
#ifndef TEST_EVENTS_TIMING_MEAN
#define TEST_EVENTS_TIMING_MEAN 25
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327950288
#endif
// Random number generation to skew timing values
float gauss(float mu, float sigma)
{
float x = (float)rand() / ((float)RAND_MAX + 1);
float y = (float)rand() / ((float)RAND_MAX + 1);
float x2pi = x * 2.0 * M_PI;
float g2rad = sqrt(-2.0 * log(1.0 - y));
float z = cos(x2pi) * g2rad;
return mu + z * sigma;
}
float chisq(float sigma)
{
return pow(gauss(0, sqrt(sigma)), 2);
}
Timer timer;
DigitalOut led(LED1);
equeue_sema_t sema;
// Timer timing test
void timer_timing_test()
{
timer.reset();
timer.start();
int prev = timer.read_us();
while (prev < TEST_EVENTS_TIMING_TIME * 1000) {
int next = timer.read_us();
if (next < prev) {
printf("backwards drift %d -> %d (%08x -> %08x)\r\n",
prev, next, prev, next);
}
TEST_ASSERT(next >= prev);
prev = next;
}
}
// equeue tick timing test
void tick_timing_test()
{
unsigned start = equeue_tick();
int prev = 0;
while (prev < TEST_EVENTS_TIMING_TIME) {
int next = equeue_tick() - start;
if (next < prev) {
printf("backwards drift %d -> %d (%08x -> %08x)\r\n",
prev, next, prev, next);
}
TEST_ASSERT(next >= prev);
prev = next;
}
}
// equeue semaphore timing test
void semaphore_timing_test()
{
srand(0);
timer.reset();
timer.start();
int err = equeue_sema_create(&sema);
TEST_ASSERT_EQUAL(0, err);
while (timer.read_ms() < TEST_EVENTS_TIMING_TIME) {
int delay = chisq(TEST_EVENTS_TIMING_MEAN);
int start = timer.read_us();
equeue_sema_wait(&sema, delay);
int taken = timer.read_us() - start;
if (taken < (delay * 1000 - 5000) || taken > (delay * 1000 + 5000)) {
printf("delay %dms => error %dus\r\n", delay, abs(1000 * delay - taken));
}
TEST_ASSERT_INT_WITHIN(5000, taken, delay * 1000);
led = !led;
}
equeue_sema_destroy(&sema);
}
// Test setup
utest::v1::status_t test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP((number_of_cases + 1)*TEST_EVENTS_TIMING_TIME / 1000, "default_auto");
return verbose_test_setup_handler(number_of_cases);
}
const Case cases[] = {
Case("Testing accuracy of timer", timer_timing_test),
Case("Testing accuracy of equeue tick", tick_timing_test),
Case("Testing accuracy of equeue semaphore", semaphore_timing_test),
};
Specification specification(test_setup, cases);
int main()
{
return !Harness::run(specification);
}