mbed-os/hal/mbed_ticker_api.c

508 lines
15 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2015 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stddef.h>
#include "hal/ticker_api.h"
#include "platform/mbed_critical.h"
#include "platform/mbed_assert.h"
#include "platform/mbed_error.h"
static void schedule_interrupt(const ticker_data_t *const ticker);
static void update_present_time(const ticker_data_t *const ticker);
/*
* Initialize a ticker instance.
*/
static void initialize(const ticker_data_t *ticker)
{
// return if the queue has already been initialized, in that case the
// interface used by the queue is already initialized.
if (ticker->queue->initialized) {
return;
}
if (ticker->queue->suspended) {
return;
}
ticker->interface->init();
const ticker_info_t *info = ticker->interface->get_info();
uint32_t frequency = info->frequency;
if (info->frequency == 0) {
#if MBED_TRAP_ERRORS_ENABLED
MBED_ERROR(
MBED_MAKE_ERROR(
MBED_MODULE_HAL,
MBED_ERROR_CODE_NOT_READY
),
"Ticker frequency is zero"
);
#else
frequency = 1000000;
#endif // MBED_TRAP_ERRORS_ENABLED
}
uint8_t frequency_shifts = 0;
for (uint8_t i = 31; i > 0; --i) {
if ((1U << i) == frequency) {
frequency_shifts = i;
break;
}
}
uint32_t bits = info->bits;
if ((info->bits > 32) || (info->bits < 4)) {
#if MBED_TRAP_ERRORS_ENABLED
MBED_ERROR(
MBED_MAKE_ERROR(
MBED_MODULE_HAL,
MBED_ERROR_CODE_INVALID_SIZE
),
"Ticker number of bit is greater than 32 or less than 4 bits"
);
#else
bits = 32;
#endif // MBED_TRAP_ERRORS_ENABLED
}
uint32_t max_delta = 0x7 << (bits - 4); // 7/16th
uint64_t max_delta_us =
((uint64_t)max_delta * 1000000 + frequency - 1) / frequency;
ticker->queue->event_handler = NULL;
ticker->queue->head = NULL;
ticker->queue->tick_last_read = ticker->interface->read();
ticker->queue->tick_remainder = 0;
ticker->queue->frequency = frequency;
ticker->queue->frequency_shifts = frequency_shifts;
ticker->queue->bitmask = ((uint64_t)1 << bits) - 1;
ticker->queue->max_delta = max_delta;
ticker->queue->max_delta_us = max_delta_us;
ticker->queue->present_time = 0;
ticker->queue->dispatching = false;
ticker->queue->suspended = false;
ticker->queue->initialized = true;
update_present_time(ticker);
schedule_interrupt(ticker);
}
/**
* Set the event handler function of a ticker instance.
*/
static void set_handler(const ticker_data_t *const ticker, ticker_event_handler handler)
{
ticker->queue->event_handler = handler;
}
/*
* Convert a 32 bit timestamp into a 64 bit timestamp.
*
* A 64 bit timestamp is used as the point of time of reference while the
* timestamp to convert is relative to this point of time.
*
* The lower 32 bits of the timestamp returned will be equal to the timestamp to
* convert.
*
* If the timestamp to convert is less than the lower 32 bits of the time
* reference then the timestamp to convert is seen as an overflowed value and
* the upper 32 bit of the timestamp returned will be equal to the upper 32 bit
* of the reference point + 1.
* Otherwise, the upper 32 bit returned will be equal to the upper 32 bit of the
* reference point.
*
* @param ref: The 64 bit timestamp of reference.
* @param timestamp: The timestamp to convert.
*/
static us_timestamp_t convert_timestamp(us_timestamp_t ref, timestamp_t timestamp)
{
bool overflow = timestamp < ((timestamp_t) ref) ? true : false;
us_timestamp_t result = (ref & ~((us_timestamp_t)UINT32_MAX)) | timestamp;
if (overflow) {
result += (1ULL << 32);
}
return result;
}
/**
* Update the present timestamp value of a ticker.
*/
static void update_present_time(const ticker_data_t *const ticker)
{
ticker_event_queue_t *queue = ticker->queue;
if (queue->suspended) {
return;
}
uint32_t ticker_time = ticker->interface->read();
if (ticker_time == ticker->queue->tick_last_read) {
// No work to do
return;
}
uint64_t elapsed_ticks = (ticker_time - queue->tick_last_read) & queue->bitmask;
queue->tick_last_read = ticker_time;
uint64_t elapsed_us;
if (1000000 == queue->frequency) {
// Optimized for 1MHz
elapsed_us = elapsed_ticks;
} else if (0 != queue->frequency_shifts) {
// Optimized for frequencies divisible by 2
uint64_t us_x_ticks = elapsed_ticks * 1000000;
elapsed_us = us_x_ticks >> queue->frequency_shifts;
// Update remainder
queue->tick_remainder += us_x_ticks - (elapsed_us << queue->frequency_shifts);
if (queue->tick_remainder >= queue->frequency) {
elapsed_us += 1;
queue->tick_remainder -= queue->frequency;
}
} else {
// General case
uint64_t us_x_ticks = elapsed_ticks * 1000000;
elapsed_us = us_x_ticks / queue->frequency;
// Update remainder
queue->tick_remainder += us_x_ticks - elapsed_us * queue->frequency;
if (queue->tick_remainder >= queue->frequency) {
elapsed_us += 1;
queue->tick_remainder -= queue->frequency;
}
}
// Update current time
queue->present_time += elapsed_us;
}
/**
* Given the absolute timestamp compute the hal tick timestamp rounded up.
*/
static timestamp_t compute_tick_round_up(const ticker_data_t *const ticker, us_timestamp_t timestamp)
{
ticker_event_queue_t *queue = ticker->queue;
us_timestamp_t delta_us = timestamp - queue->present_time;
timestamp_t delta = ticker->queue->max_delta;
if (delta_us <= ticker->queue->max_delta_us) {
// Checking max_delta_us ensures the operation will not overflow
if (1000000 == queue->frequency) {
// Optimized for 1MHz
delta = delta_us;
if (delta > ticker->queue->max_delta) {
delta = ticker->queue->max_delta;
}
} else if (0 != queue->frequency_shifts) {
// Optimized frequencies divisible by 2
delta = ((delta_us << ticker->queue->frequency_shifts) + 1000000 - 1) / 1000000;
if (delta > ticker->queue->max_delta) {
delta = ticker->queue->max_delta;
}
} else {
// General case
delta = (delta_us * queue->frequency + 1000000 - 1) / 1000000;
if (delta > ticker->queue->max_delta) {
delta = ticker->queue->max_delta;
}
}
}
return (queue->tick_last_read + delta) & queue->bitmask;
}
/**
* Return 1 if the tick has incremented to or past match_tick, otherwise 0.
*/
int _ticker_match_interval_passed(timestamp_t prev_tick, timestamp_t cur_tick, timestamp_t match_tick)
{
if (match_tick > prev_tick) {
return (cur_tick >= match_tick) || (cur_tick < prev_tick);
} else {
return (cur_tick < prev_tick) && (cur_tick >= match_tick);
}
}
/**
* Compute the time when the interrupt has to be triggered and schedule it.
*
* If there is no event in the queue or the next event to execute is in more
* than ticker.queue.max_delta ticks from now then the ticker irq will be
* scheduled in ticker.queue.max_delta ticks. Otherwise the irq will be
* scheduled to happen when the running counter reach the timestamp of the
* first event in the queue.
*
* @note If there is no event in the queue then the interrupt is scheduled to
* in ticker.queue.max_delta. This is necessary to keep track
* of the timer overflow.
*/
static void schedule_interrupt(const ticker_data_t *const ticker)
{
ticker_event_queue_t *queue = ticker->queue;
if (queue->suspended || ticker->queue->dispatching) {
// Don't schedule the next interrupt until dispatching is
// finished. This prevents repeated calls to interface->set_interrupt
return;
}
update_present_time(ticker);
if (ticker->queue->head) {
us_timestamp_t present = ticker->queue->present_time;
us_timestamp_t match_time = ticker->queue->head->timestamp;
// if the event at the head of the queue is in the past then schedule
// it immediately.
if (match_time <= present) {
ticker->interface->fire_interrupt();
return;
}
timestamp_t match_tick = compute_tick_round_up(ticker, match_time);
// The same tick should never occur since match_tick is rounded up.
// If the same tick is returned scheduling will not work correctly.
MBED_ASSERT(match_tick != queue->tick_last_read);
ticker->interface->set_interrupt(match_tick);
timestamp_t cur_tick = ticker->interface->read();
if (_ticker_match_interval_passed(queue->tick_last_read, cur_tick, match_tick)) {
ticker->interface->fire_interrupt();
}
} else {
uint32_t match_tick =
(queue->tick_last_read + queue->max_delta) & queue->bitmask;
ticker->interface->set_interrupt(match_tick);
}
}
void ticker_set_handler(const ticker_data_t *const ticker, ticker_event_handler handler)
{
initialize(ticker);
core_util_critical_section_enter();
set_handler(ticker, handler);
core_util_critical_section_exit();
}
void ticker_irq_handler(const ticker_data_t *const ticker)
{
core_util_critical_section_enter();
ticker->interface->clear_interrupt();
if (ticker->queue->suspended) {
core_util_critical_section_exit();
return;
}
/* Go through all the pending TimerEvents */
ticker->queue->dispatching = true;
while (1) {
if (ticker->queue->head == NULL) {
break;
}
// update the current timestamp used by the queue
update_present_time(ticker);
if (ticker->queue->head->timestamp <= ticker->queue->present_time) {
// This event was in the past:
// point to the following one and execute its handler
ticker_event_t *p = ticker->queue->head;
ticker->queue->head = ticker->queue->head->next;
if (ticker->queue->event_handler != NULL) {
(*ticker->queue->event_handler)(p->id); // NOTE: the handler can set new events
}
/* Note: We continue back to examining the head because calling the
* event handler may have altered the chain of pending events. */
} else {
break;
}
}
ticker->queue->dispatching = false;
schedule_interrupt(ticker);
core_util_critical_section_exit();
}
void ticker_insert_event(const ticker_data_t *const ticker, ticker_event_t *obj, timestamp_t timestamp, uint32_t id)
{
core_util_critical_section_enter();
// update the current timestamp
update_present_time(ticker);
us_timestamp_t absolute_timestamp = convert_timestamp(
ticker->queue->present_time,
timestamp
);
// defer to ticker_insert_event_us
ticker_insert_event_us(
ticker,
obj, absolute_timestamp, id
);
core_util_critical_section_exit();
}
void ticker_insert_event_us(const ticker_data_t *const ticker, ticker_event_t *obj, us_timestamp_t timestamp, uint32_t id)
{
core_util_critical_section_enter();
// update the current timestamp
update_present_time(ticker);
// initialise our data
obj->timestamp = timestamp;
obj->id = id;
/* Go through the list until we either reach the end, or find
an element this should come before (which is possibly the
head). */
ticker_event_t *prev = NULL, *p = ticker->queue->head;
while (p != NULL) {
/* check if we come before p */
if (timestamp < p->timestamp) {
break;
}
/* go to the next element */
prev = p;
p = p->next;
}
/* if we're at the end p will be NULL, which is correct */
obj->next = p;
/* if prev is NULL we're at the head */
if (prev == NULL) {
ticker->queue->head = obj;
} else {
prev->next = obj;
}
if (prev == NULL || timestamp <= ticker->queue->present_time) {
schedule_interrupt(ticker);
}
core_util_critical_section_exit();
}
void ticker_remove_event(const ticker_data_t *const ticker, ticker_event_t *obj)
{
core_util_critical_section_enter();
// remove this object from the list
if (ticker->queue->head == obj) {
// first in the list, so just drop me
ticker->queue->head = obj->next;
schedule_interrupt(ticker);
} else {
// find the object before me, then drop me
ticker_event_t *p = ticker->queue->head;
while (p != NULL) {
if (p->next == obj) {
p->next = obj->next;
break;
}
p = p->next;
}
}
core_util_critical_section_exit();
}
timestamp_t ticker_read(const ticker_data_t *const ticker)
{
return ticker_read_us(ticker);
}
us_timestamp_t ticker_read_us(const ticker_data_t *const ticker)
{
us_timestamp_t ret;
initialize(ticker);
core_util_critical_section_enter();
update_present_time(ticker);
ret = ticker->queue->present_time;
core_util_critical_section_exit();
return ret;
}
int ticker_get_next_timestamp(const ticker_data_t *const data, timestamp_t *timestamp)
{
int ret = 0;
/* if head is NULL, there are no pending events */
core_util_critical_section_enter();
if (data->queue->head != NULL) {
*timestamp = data->queue->head->timestamp;
ret = 1;
}
core_util_critical_section_exit();
return ret;
}
int ticker_get_next_timestamp_us(const ticker_data_t *const data, us_timestamp_t *timestamp)
{
int ret = 0;
/* if head is NULL, there are no pending events */
core_util_critical_section_enter();
if (data->queue->head != NULL) {
*timestamp = data->queue->head->timestamp;
ret = 1;
}
core_util_critical_section_exit();
return ret;
}
void ticker_suspend(const ticker_data_t *const ticker)
{
core_util_critical_section_enter();
ticker->queue->suspended = true;
core_util_critical_section_exit();
}
void ticker_resume(const ticker_data_t *const ticker)
{
core_util_critical_section_enter();
ticker->queue->suspended = false;
if (ticker->queue->initialized) {
ticker->queue->tick_last_read = ticker->interface->read();
update_present_time(ticker);
schedule_interrupt(ticker);
} else {
initialize(ticker);
}
core_util_critical_section_exit();
}