mbed-os/cmsis/core_ca_mmu.h

848 lines
25 KiB
C

;/**************************************************************************//**
; * @file core_ca_mmu.h
; * @brief MMU Startup File for A9_MP Device Series
; * @version V1.01
; * @date 10 Sept 2014
; *
; * @note
; *
; ******************************************************************************/
;/* Copyright (c) 2012-2014 ARM LIMITED
;
; All rights reserved.
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are met:
; - Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; - Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the distribution.
; - Neither the name of ARM nor the names of its contributors may be used
; to endorse or promote products derived from this software without
; specific prior written permission.
; *
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
; ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
; LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
; CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
; SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
; INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
; CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
; ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
; POSSIBILITY OF SUCH DAMAGE.
; ---------------------------------------------------------------------------*/
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _MMU_FUNC_H
#define _MMU_FUNC_H
#define SECTION_DESCRIPTOR (0x2)
#define SECTION_MASK (0xFFFFFFFC)
#define SECTION_TEXCB_MASK (0xFFFF8FF3)
#define SECTION_B_SHIFT (2)
#define SECTION_C_SHIFT (3)
#define SECTION_TEX0_SHIFT (12)
#define SECTION_TEX1_SHIFT (13)
#define SECTION_TEX2_SHIFT (14)
#define SECTION_XN_MASK (0xFFFFFFEF)
#define SECTION_XN_SHIFT (4)
#define SECTION_DOMAIN_MASK (0xFFFFFE1F)
#define SECTION_DOMAIN_SHIFT (5)
#define SECTION_P_MASK (0xFFFFFDFF)
#define SECTION_P_SHIFT (9)
#define SECTION_AP_MASK (0xFFFF73FF)
#define SECTION_AP_SHIFT (10)
#define SECTION_AP2_SHIFT (15)
#define SECTION_S_MASK (0xFFFEFFFF)
#define SECTION_S_SHIFT (16)
#define SECTION_NG_MASK (0xFFFDFFFF)
#define SECTION_NG_SHIFT (17)
#define SECTION_NS_MASK (0xFFF7FFFF)
#define SECTION_NS_SHIFT (19)
#define PAGE_L1_DESCRIPTOR (0x1)
#define PAGE_L1_MASK (0xFFFFFFFC)
#define PAGE_L2_4K_DESC (0x2)
#define PAGE_L2_4K_MASK (0xFFFFFFFD)
#define PAGE_L2_64K_DESC (0x1)
#define PAGE_L2_64K_MASK (0xFFFFFFFC)
#define PAGE_4K_TEXCB_MASK (0xFFFFFE33)
#define PAGE_4K_B_SHIFT (2)
#define PAGE_4K_C_SHIFT (3)
#define PAGE_4K_TEX0_SHIFT (6)
#define PAGE_4K_TEX1_SHIFT (7)
#define PAGE_4K_TEX2_SHIFT (8)
#define PAGE_64K_TEXCB_MASK (0xFFFF8FF3)
#define PAGE_64K_B_SHIFT (2)
#define PAGE_64K_C_SHIFT (3)
#define PAGE_64K_TEX0_SHIFT (12)
#define PAGE_64K_TEX1_SHIFT (13)
#define PAGE_64K_TEX2_SHIFT (14)
#define PAGE_TEXCB_MASK (0xFFFF8FF3)
#define PAGE_B_SHIFT (2)
#define PAGE_C_SHIFT (3)
#define PAGE_TEX_SHIFT (12)
#define PAGE_XN_4K_MASK (0xFFFFFFFE)
#define PAGE_XN_4K_SHIFT (0)
#define PAGE_XN_64K_MASK (0xFFFF7FFF)
#define PAGE_XN_64K_SHIFT (15)
#define PAGE_DOMAIN_MASK (0xFFFFFE1F)
#define PAGE_DOMAIN_SHIFT (5)
#define PAGE_P_MASK (0xFFFFFDFF)
#define PAGE_P_SHIFT (9)
#define PAGE_AP_MASK (0xFFFFFDCF)
#define PAGE_AP_SHIFT (4)
#define PAGE_AP2_SHIFT (9)
#define PAGE_S_MASK (0xFFFFFBFF)
#define PAGE_S_SHIFT (10)
#define PAGE_NG_MASK (0xFFFFF7FF)
#define PAGE_NG_SHIFT (11)
#define PAGE_NS_MASK (0xFFFFFFF7)
#define PAGE_NS_SHIFT (3)
#define OFFSET_1M (0x00100000)
#define OFFSET_64K (0x00010000)
#define OFFSET_4K (0x00001000)
#define DESCRIPTOR_FAULT (0x00000000)
/* ########################### MMU Function Access ########################### */
/** \ingroup MMU_FunctionInterface
\defgroup MMU_Functions MMU Functions Interface
@{
*/
/* Attributes enumerations */
/* Region size attributes */
typedef enum
{
SECTION,
PAGE_4k,
PAGE_64k,
} mmu_region_size_Type;
/* Region type attributes */
typedef enum
{
NORMAL,
DEVICE,
SHARED_DEVICE,
NON_SHARED_DEVICE,
STRONGLY_ORDERED
} mmu_memory_Type;
/* Region cacheability attributes */
typedef enum
{
NON_CACHEABLE,
WB_WA,
WT,
WB_NO_WA,
} mmu_cacheability_Type;
/* Region parity check attributes */
typedef enum
{
ECC_DISABLED,
ECC_ENABLED,
} mmu_ecc_check_Type;
/* Region execution attributes */
typedef enum
{
EXECUTE,
NON_EXECUTE,
} mmu_execute_Type;
/* Region global attributes */
typedef enum
{
GLOBAL,
NON_GLOBAL,
} mmu_global_Type;
/* Region shareability attributes */
typedef enum
{
NON_SHARED,
SHARED,
} mmu_shared_Type;
/* Region security attributes */
typedef enum
{
SECURE,
NON_SECURE,
} mmu_secure_Type;
/* Region access attributes */
typedef enum
{
NO_ACCESS,
RW,
READ,
} mmu_access_Type;
/* Memory Region definition */
typedef struct RegionStruct {
mmu_region_size_Type rg_t;
mmu_memory_Type mem_t;
uint8_t domain;
mmu_cacheability_Type inner_norm_t;
mmu_cacheability_Type outer_norm_t;
mmu_ecc_check_Type e_t;
mmu_execute_Type xn_t;
mmu_global_Type g_t;
mmu_secure_Type sec_t;
mmu_access_Type priv_t;
mmu_access_Type user_t;
mmu_shared_Type sh_t;
} mmu_region_attributes_Type;
/** \brief Set section execution-never attribute
The function sets section execution-never attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] xn Section execution-never attribute : EXECUTE , NON_EXECUTE.
\return 0
*/
__STATIC_INLINE int __xn_section(uint32_t *descriptor_l1, mmu_execute_Type xn)
{
*descriptor_l1 &= SECTION_XN_MASK;
*descriptor_l1 |= ((xn & 0x1) << SECTION_XN_SHIFT);
return 0;
}
/** \brief Set section domain
The function sets section domain
\param [out] descriptor_l1 L1 descriptor.
\param [in] domain Section domain
\return 0
*/
__STATIC_INLINE int __domain_section(uint32_t *descriptor_l1, uint8_t domain)
{
*descriptor_l1 &= SECTION_DOMAIN_MASK;
*descriptor_l1 |= ((domain & 0xF) << SECTION_DOMAIN_SHIFT);
return 0;
}
/** \brief Set section parity check
The function sets section parity check
\param [out] descriptor_l1 L1 descriptor.
\param [in] p_bit Parity check: ECC_DISABLED, ECC_ENABLED
\return 0
*/
__STATIC_INLINE int __p_section(uint32_t *descriptor_l1, mmu_ecc_check_Type p_bit)
{
*descriptor_l1 &= SECTION_P_MASK;
*descriptor_l1 |= ((p_bit & 0x1) << SECTION_P_SHIFT);
return 0;
}
/** \brief Set section access privileges
The function sets section access privileges
\param [out] descriptor_l1 L1 descriptor.
\param [in] user User Level Access: NO_ACCESS, RW, READ
\param [in] priv Privilege Level Access: NO_ACCESS, RW, READ
\param [in] afe Access flag enable
\return 0
*/
__STATIC_INLINE int __ap_section(uint32_t *descriptor_l1, mmu_access_Type user, mmu_access_Type priv, uint32_t afe)
{
uint32_t ap = 0;
if (afe == 0) { //full access
if ((priv == NO_ACCESS) && (user == NO_ACCESS)) { ap = 0x0; }
else if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == READ)) { ap = 0x2; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
else { //Simplified access
if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
*descriptor_l1 &= SECTION_AP_MASK;
*descriptor_l1 |= (ap & 0x3) << SECTION_AP_SHIFT;
*descriptor_l1 |= ((ap & 0x4)>>2) << SECTION_AP2_SHIFT;
return 0;
}
/** \brief Set section shareability
The function sets section shareability
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit Section shareability: NON_SHARED, SHARED
\return 0
*/
__STATIC_INLINE int __shared_section(uint32_t *descriptor_l1, mmu_shared_Type s_bit)
{
*descriptor_l1 &= SECTION_S_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << SECTION_S_SHIFT);
return 0;
}
/** \brief Set section Global attribute
The function sets section Global attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] g_bit Section attribute: GLOBAL, NON_GLOBAL
\return 0
*/
__STATIC_INLINE int __global_section(uint32_t *descriptor_l1, mmu_global_Type g_bit)
{
*descriptor_l1 &= SECTION_NG_MASK;
*descriptor_l1 |= ((g_bit & 0x1) << SECTION_NG_SHIFT);
return 0;
}
/** \brief Set section Security attribute
The function sets section Global attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit Section Security attribute: SECURE, NON_SECURE
\return 0
*/
__STATIC_INLINE int __secure_section(uint32_t *descriptor_l1, mmu_secure_Type s_bit)
{
*descriptor_l1 &= SECTION_NS_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << SECTION_NS_SHIFT);
return 0;
}
/* Page 4k or 64k */
/** \brief Set 4k/64k page execution-never attribute
The function sets 4k/64k page execution-never attribute
\param [out] descriptor_l2 L2 descriptor.
\param [in] xn Page execution-never attribute : EXECUTE , NON_EXECUTE.
\param [in] page Page size: PAGE_4k, PAGE_64k,
\return 0
*/
__STATIC_INLINE int __xn_page(uint32_t *descriptor_l2, mmu_execute_Type xn, mmu_region_size_Type page)
{
if (page == PAGE_4k)
{
*descriptor_l2 &= PAGE_XN_4K_MASK;
*descriptor_l2 |= ((xn & 0x1) << PAGE_XN_4K_SHIFT);
}
else
{
*descriptor_l2 &= PAGE_XN_64K_MASK;
*descriptor_l2 |= ((xn & 0x1) << PAGE_XN_64K_SHIFT);
}
return 0;
}
/** \brief Set 4k/64k page domain
The function sets 4k/64k page domain
\param [out] descriptor_l1 L1 descriptor.
\param [in] domain Page domain
\return 0
*/
__STATIC_INLINE int __domain_page(uint32_t *descriptor_l1, uint8_t domain)
{
*descriptor_l1 &= PAGE_DOMAIN_MASK;
*descriptor_l1 |= ((domain & 0xf) << PAGE_DOMAIN_SHIFT);
return 0;
}
/** \brief Set 4k/64k page parity check
The function sets 4k/64k page parity check
\param [out] descriptor_l1 L1 descriptor.
\param [in] p_bit Parity check: ECC_DISABLED, ECC_ENABLED
\return 0
*/
__STATIC_INLINE int __p_page(uint32_t *descriptor_l1, mmu_ecc_check_Type p_bit)
{
*descriptor_l1 &= SECTION_P_MASK;
*descriptor_l1 |= ((p_bit & 0x1) << SECTION_P_SHIFT);
return 0;
}
/** \brief Set 4k/64k page access privileges
The function sets 4k/64k page access privileges
\param [out] descriptor_l2 L2 descriptor.
\param [in] user User Level Access: NO_ACCESS, RW, READ
\param [in] priv Privilege Level Access: NO_ACCESS, RW, READ
\param [in] afe Access flag enable
\return 0
*/
__STATIC_INLINE int __ap_page(uint32_t *descriptor_l2, mmu_access_Type user, mmu_access_Type priv, uint32_t afe)
{
uint32_t ap = 0;
if (afe == 0) { //full access
if ((priv == NO_ACCESS) && (user == NO_ACCESS)) { ap = 0x0; }
else if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == READ)) { ap = 0x2; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x6; }
}
else { //Simplified access
if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
*descriptor_l2 &= PAGE_AP_MASK;
*descriptor_l2 |= (ap & 0x3) << PAGE_AP_SHIFT;
*descriptor_l2 |= ((ap & 0x4)>>2) << PAGE_AP2_SHIFT;
return 0;
}
/** \brief Set 4k/64k page shareability
The function sets 4k/64k page shareability
\param [out] descriptor_l2 L2 descriptor.
\param [in] s_bit 4k/64k page shareability: NON_SHARED, SHARED
\return 0
*/
__STATIC_INLINE int __shared_page(uint32_t *descriptor_l2, mmu_shared_Type s_bit)
{
*descriptor_l2 &= PAGE_S_MASK;
*descriptor_l2 |= ((s_bit & 0x1) << PAGE_S_SHIFT);
return 0;
}
/** \brief Set 4k/64k page Global attribute
The function sets 4k/64k page Global attribute
\param [out] descriptor_l2 L2 descriptor.
\param [in] g_bit 4k/64k page attribute: GLOBAL, NON_GLOBAL
\return 0
*/
__STATIC_INLINE int __global_page(uint32_t *descriptor_l2, mmu_global_Type g_bit)
{
*descriptor_l2 &= PAGE_NG_MASK;
*descriptor_l2 |= ((g_bit & 0x1) << PAGE_NG_SHIFT);
return 0;
}
/** \brief Set 4k/64k page Security attribute
The function sets 4k/64k page Global attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit 4k/64k page Security attribute: SECURE, NON_SECURE
\return 0
*/
__STATIC_INLINE int __secure_page(uint32_t *descriptor_l1, mmu_secure_Type s_bit)
{
*descriptor_l1 &= PAGE_NS_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << PAGE_NS_SHIFT);
return 0;
}
/** \brief Set Section memory attributes
The function sets section memory attributes
\param [out] descriptor_l1 L1 descriptor.
\param [in] mem Section memory type: NORMAL, DEVICE, SHARED_DEVICE, NON_SHARED_DEVICE, STRONGLY_ORDERED
\param [in] outer Outer cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\param [in] inner Inner cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\return 0
*/
__STATIC_INLINE int __memory_section(uint32_t *descriptor_l1, mmu_memory_Type mem, mmu_cacheability_Type outer, mmu_cacheability_Type inner)
{
*descriptor_l1 &= SECTION_TEXCB_MASK;
if (STRONGLY_ORDERED == mem)
{
return 0;
}
else if (SHARED_DEVICE == mem)
{
*descriptor_l1 |= (1 << SECTION_B_SHIFT);
}
else if (NON_SHARED_DEVICE == mem)
{
*descriptor_l1 |= (1 << SECTION_TEX1_SHIFT);
}
else if (NORMAL == mem)
{
*descriptor_l1 |= 1 << SECTION_TEX2_SHIFT;
switch(inner)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l1 |= (1 << SECTION_B_SHIFT);
break;
case WT:
*descriptor_l1 |= 1 << SECTION_C_SHIFT;
break;
case WB_NO_WA:
*descriptor_l1 |= (1 << SECTION_B_SHIFT) | (1 << SECTION_C_SHIFT);
break;
}
switch(outer)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l1 |= (1 << SECTION_TEX0_SHIFT);
break;
case WT:
*descriptor_l1 |= 1 << SECTION_TEX1_SHIFT;
break;
case WB_NO_WA:
*descriptor_l1 |= (1 << SECTION_TEX0_SHIFT) | (1 << SECTION_TEX0_SHIFT);
break;
}
}
return 0;
}
/** \brief Set 4k/64k page memory attributes
The function sets 4k/64k page memory attributes
\param [out] descriptor_l2 L2 descriptor.
\param [in] mem 4k/64k page memory type: NORMAL, DEVICE, SHARED_DEVICE, NON_SHARED_DEVICE, STRONGLY_ORDERED
\param [in] outer Outer cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\param [in] inner Inner cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\return 0
*/
__STATIC_INLINE int __memory_page(uint32_t *descriptor_l2, mmu_memory_Type mem, mmu_cacheability_Type outer, mmu_cacheability_Type inner, mmu_region_size_Type page)
{
*descriptor_l2 &= PAGE_4K_TEXCB_MASK;
if (page == PAGE_64k)
{
//same as section
__memory_section(descriptor_l2, mem, outer, inner);
}
else
{
if (STRONGLY_ORDERED == mem)
{
return 0;
}
else if (SHARED_DEVICE == mem)
{
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT);
}
else if (NON_SHARED_DEVICE == mem)
{
*descriptor_l2 |= (1 << PAGE_4K_TEX1_SHIFT);
}
else if (NORMAL == mem)
{
*descriptor_l2 |= 1 << PAGE_4K_TEX2_SHIFT;
switch(inner)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT);
break;
case WT:
*descriptor_l2 |= 1 << PAGE_4K_C_SHIFT;
break;
case WB_NO_WA:
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT) | (1 << PAGE_4K_C_SHIFT);
break;
}
switch(outer)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l2 |= (1 << PAGE_4K_TEX0_SHIFT);
break;
case WT:
*descriptor_l2 |= 1 << PAGE_4K_TEX1_SHIFT;
break;
case WB_NO_WA:
*descriptor_l2 |= (1 << PAGE_4K_TEX0_SHIFT) | (1 << PAGE_4K_TEX0_SHIFT);
break;
}
}
}
return 0;
}
/** \brief Create a L1 section descriptor
The function creates a section descriptor.
Assumptions:
- 16MB super sections not supported
- TEX remap disabled, so memory type and attributes are described directly by bits in the descriptor
- Functions always return 0
\param [out] descriptor L1 descriptor
\param [out] descriptor2 L2 descriptor
\param [in] reg Section attributes
\return 0
*/
__STATIC_INLINE int __get_section_descriptor(uint32_t *descriptor, mmu_region_attributes_Type reg)
{
*descriptor = 0;
__memory_section(descriptor, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t);
__xn_section(descriptor,reg.xn_t);
__domain_section(descriptor, reg.domain);
__p_section(descriptor, reg.e_t);
__ap_section(descriptor, reg.priv_t, reg.user_t, 1);
__shared_section(descriptor,reg.sh_t);
__global_section(descriptor,reg.g_t);
__secure_section(descriptor,reg.sec_t);
*descriptor &= SECTION_MASK;
*descriptor |= SECTION_DESCRIPTOR;
return 0;
}
/** \brief Create a L1 and L2 4k/64k page descriptor
The function creates a 4k/64k page descriptor.
Assumptions:
- TEX remap disabled, so memory type and attributes are described directly by bits in the descriptor
- Functions always return 0
\param [out] descriptor L1 descriptor
\param [out] descriptor2 L2 descriptor
\param [in] reg 4k/64k page attributes
\return 0
*/
__STATIC_INLINE int __get_page_descriptor(uint32_t *descriptor, uint32_t *descriptor2, mmu_region_attributes_Type reg)
{
*descriptor = 0;
*descriptor2 = 0;
switch (reg.rg_t)
{
case PAGE_4k:
__memory_page(descriptor2, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t, PAGE_4k);
__xn_page(descriptor2, reg.xn_t, PAGE_4k);
__domain_page(descriptor, reg.domain);
__p_page(descriptor, reg.e_t);
__ap_page(descriptor2, reg.priv_t, reg.user_t, 1);
__shared_page(descriptor2,reg.sh_t);
__global_page(descriptor2,reg.g_t);
__secure_page(descriptor,reg.sec_t);
*descriptor &= PAGE_L1_MASK;
*descriptor |= PAGE_L1_DESCRIPTOR;
*descriptor2 &= PAGE_L2_4K_MASK;
*descriptor2 |= PAGE_L2_4K_DESC;
break;
case PAGE_64k:
__memory_page(descriptor2, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t, PAGE_64k);
__xn_page(descriptor2, reg.xn_t, PAGE_64k);
__domain_page(descriptor, reg.domain);
__p_page(descriptor, reg.e_t);
__ap_page(descriptor2, reg.priv_t, reg.user_t, 1);
__shared_page(descriptor2,reg.sh_t);
__global_page(descriptor2,reg.g_t);
__secure_page(descriptor,reg.sec_t);
*descriptor &= PAGE_L1_MASK;
*descriptor |= PAGE_L1_DESCRIPTOR;
*descriptor2 &= PAGE_L2_64K_MASK;
*descriptor2 |= PAGE_L2_64K_DESC;
break;
case SECTION:
//error
break;
}
return 0;
}
/** \brief Create a 1MB Section
\param [in] ttb Translation table base address
\param [in] base_address Section base address
\param [in] count Number of sections to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
*/
__STATIC_INLINE void __TTSection(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1)
{
uint32_t offset;
uint32_t entry;
uint32_t i;
offset = base_address >> 20;
entry = (base_address & 0xFFF00000) | descriptor_l1;
//4 bytes aligned
ttb = ttb + offset;
for (i = 0; i < count; i++ )
{
//4 bytes aligned
*ttb++ = entry;
entry += OFFSET_1M;
}
}
/** \brief Create a 4k page entry
\param [in] ttb L1 table base address
\param [in] base_address 4k base address
\param [in] count Number of 4k pages to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
\param [in] ttb_l2 L2 table base address
\param [in] descriptor_l2 L2 descriptor (region attributes)
*/
__STATIC_INLINE void __TTPage_4k(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1, uint32_t *ttb_l2, uint32_t descriptor_l2 )
{
uint32_t offset, offset2;
uint32_t entry, entry2;
uint32_t i;
offset = base_address >> 20;
entry = ((int)ttb_l2 & 0xFFFFFC00) | descriptor_l1;
//4 bytes aligned
ttb += offset;
//create l1_entry
*ttb = entry;
offset2 = (base_address & 0xff000) >> 12;
ttb_l2 += offset2;
entry2 = (base_address & 0xFFFFF000) | descriptor_l2;
for (i = 0; i < count; i++ )
{
//4 bytes aligned
*ttb_l2++ = entry2;
entry2 += OFFSET_4K;
}
}
/** \brief Create a 64k page entry
\param [in] ttb L1 table base address
\param [in] base_address 64k base address
\param [in] count Number of 64k pages to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
\param [in] ttb_l2 L2 table base address
\param [in] descriptor_l2 L2 descriptor (region attributes)
*/
__STATIC_INLINE void __TTPage_64k(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1, uint32_t *ttb_l2, uint32_t descriptor_l2 )
{
uint32_t offset, offset2;
uint32_t entry, entry2;
uint32_t i,j;
offset = base_address >> 20;
entry = ((int)ttb_l2 & 0xFFFFFC00) | descriptor_l1;
//4 bytes aligned
ttb += offset;
//create l1_entry
*ttb = entry;
offset2 = (base_address & 0xff000) >> 12;
ttb_l2 += offset2;
entry2 = (base_address & 0xFFFF0000) | descriptor_l2;
for (i = 0; i < count; i++ )
{
//create 16 entries
for (j = 0; j < 16; j++)
//4 bytes aligned
*ttb_l2++ = entry2;
entry2 += OFFSET_64K;
}
}
/*@} end of MMU_Functions */
#endif
#ifdef __cplusplus
}
#endif