mirror of https://github.com/ARMmbed/mbed-os.git
				
				
				
			
		
			
				
	
	
		
			90 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			90 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
"""
 | 
						|
mbed SDK
 | 
						|
Copyright (c) 2011-2013 ARM Limited
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License.
 | 
						|
"""
 | 
						|
from numpy import sin, arange, pi
 | 
						|
from scipy.signal import lfilter, firwin
 | 
						|
from pylab import figure, plot, grid, show
 | 
						|
 | 
						|
#------------------------------------------------
 | 
						|
# Create a signal for demonstration.
 | 
						|
#------------------------------------------------
 | 
						|
# 320 samples of (1000Hz + 15000 Hz) at 48 kHz
 | 
						|
sample_rate = 48000.
 | 
						|
nsamples = 320
 | 
						|
 | 
						|
F_1KHz = 1000.
 | 
						|
A_1KHz = 1.0
 | 
						|
 | 
						|
F_15KHz = 15000.
 | 
						|
A_15KHz = 0.5
 | 
						|
 | 
						|
t = arange(nsamples) / sample_rate
 | 
						|
signal = A_1KHz * sin(2*pi*F_1KHz*t) + A_15KHz*sin(2*pi*F_15KHz*t)
 | 
						|
 | 
						|
#------------------------------------------------
 | 
						|
# Create a FIR filter and apply it to signal.
 | 
						|
#------------------------------------------------
 | 
						|
# The Nyquist rate of the signal.
 | 
						|
nyq_rate = sample_rate / 2.
 | 
						|
 | 
						|
# The cutoff frequency of the filter: 6KHz
 | 
						|
cutoff_hz = 6000.0
 | 
						|
 | 
						|
# Length of the filter (number of coefficients, i.e. the filter order + 1)
 | 
						|
numtaps = 29
 | 
						|
 | 
						|
# Use firwin to create a lowpass FIR filter
 | 
						|
fir_coeff = firwin(numtaps, cutoff_hz/nyq_rate)
 | 
						|
 | 
						|
# Use lfilter to filter the signal with the FIR filter
 | 
						|
filtered_signal = lfilter(fir_coeff, 1.0, signal)
 | 
						|
 | 
						|
#------------------------------------------------
 | 
						|
# Plot the original and filtered signals.
 | 
						|
#------------------------------------------------
 | 
						|
 | 
						|
# The first N-1 samples are "corrupted" by the initial conditions
 | 
						|
warmup = numtaps - 1
 | 
						|
 | 
						|
# The phase delay of the filtered signal
 | 
						|
delay = (warmup / 2) / sample_rate
 | 
						|
 | 
						|
figure(1)
 | 
						|
# Plot the original signal
 | 
						|
plot(t, signal)
 | 
						|
 | 
						|
# Plot the filtered signal, shifted to compensate for the phase delay
 | 
						|
plot(t-delay, filtered_signal, 'r-')
 | 
						|
 | 
						|
# Plot just the "good" part of the filtered signal.  The first N-1
 | 
						|
# samples are "corrupted" by the initial conditions.
 | 
						|
plot(t[warmup:]-delay, filtered_signal[warmup:], 'g', linewidth=4)
 | 
						|
 | 
						|
grid(True)
 | 
						|
 | 
						|
show()
 | 
						|
 | 
						|
#------------------------------------------------
 | 
						|
# Print values
 | 
						|
#------------------------------------------------
 | 
						|
def print_values(label, values):
 | 
						|
    var = "float32_t %s[%d]" % (label, len(values))
 | 
						|
    print "%-30s = {%s}" % (var, ', '.join(["%+.10f" % x for x in values]))
 | 
						|
 | 
						|
print_values('signal', signal)
 | 
						|
print_values('fir_coeff', fir_coeff)
 | 
						|
print_values('filtered_signal', filtered_signal)
 |