mbed-os/targets/TARGET_RDA/TARGET_UNO_91H/pwmout_api.c

400 lines
11 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if DEVICE_PWMOUT
#include "mbed_assert.h"
#include "pwmout_api.h"
#include "gpio_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_interface.h"
#define PWM_CLK_SRC_20MHZ (20000000)
#define PWM_CLK_SRC_32KHZ (32768)
#define PWM_CLK_IDX_NUM (3)
#define PWM_CLKGATE_REG (RDA_SCU->CLKGATE1)
#define PWM_CLKSRC_REG (RDA_SCU->PWMCFG)
#define PWM_CLKDIV_REG (RDA_PWM->CLKR)
#define EXIF_PWM_EN_REG (RDA_EXIF->MISCCFG)
/* PORT ID, PWM ID, Pin function */
static const PinMap PinMap_PWM[] = {
{PA_0, PWM_6, 4},
{PA_1, PWM_3, 4},
{PB_0, PWM_2, 4},
{PB_1, PWM_7, 4},
{PB_2, PWM_5, 4},
{PB_3, PWM_4, 4},
{PB_8, PWM_0, 4},
{PC_1, PWM_1, 5},
{PD_0, PWM_0, 4},
{PD_1, PWM_1, 4},
{PD_2, PWM_2, 4},
{PD_3, PWM_3, 4},
{NC, NC, 0}
};
__IO uint32_t *PWM_MATCH[] = {
&(RDA_EXIF->PWM0CFG),
&(RDA_EXIF->PWM1CFG),
&(RDA_EXIF->PWM2CFG),
&(RDA_EXIF->PWM3CFG),
&( RDA_PWM->PWTCFG ),
&( RDA_PWM->LPGCFG ),
&( RDA_PWM->PWL0CFG),
&( RDA_PWM->PWL1CFG)
};
static uint32_t BaseClk_PWM[PWM_CLK_IDX_NUM] = {0UL};
static uint8_t is_pwmout_started(pwmout_t* obj);
static void pwmout_start(pwmout_t* obj);
static void pwmout_stop(pwmout_t* obj);
static void pwmout_update_cfgreg(pwmout_t* obj);
void pwmout_clk_set(pwmout_t *obj, int src, int div)
{
uint32_t reg_val = 0UL;
uint32_t clk_idx = 0UL, clk_hz = PWM_CLK_SRC_32KHZ >> 1;
PWMName pwm = (PWMName)(obj->channel);
uint32_t divider = (uint32_t)div;
MBED_ASSERT(PWM_7 >= pwm);
if (PWM_5 == pwm) {
clk_idx = 1;
} else if (PWM_6 <= pwm) {
clk_idx = 2;
}
if (divider > 0x80UL) { // max divider is 128
divider = 0x80UL;
}
reg_val = PWM_CLKSRC_REG & ~((0x00FFUL << (clk_idx * 8)) | (0x01UL << (24 + clk_idx)));
if (src) {
reg_val |= (0x01UL << (7 + (clk_idx * 8)));
clk_hz = PWM_CLK_SRC_20MHZ >> 1;
}
if (divider) {
reg_val |= ((divider - 0x01UL) << (clk_idx * 8));
BaseClk_PWM[clk_idx] = clk_hz / divider;
} else {
BaseClk_PWM[clk_idx] = clk_hz;
}
PWM_CLKSRC_REG = reg_val | (0x01UL << (24 + clk_idx));
}
void pwmout_init(pwmout_t* obj, PinName pin)
{
/* determine the channel */
PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
MBED_ASSERT(pwm != (PWMName)NC);
obj->channel = pwm;
obj->CFGR = PWM_MATCH[pwm];
obj->pin = pin;
/* Enable PWM Clock-gating */
PWM_CLKGATE_REG |= (0x01UL << 2);
/* Init PWM clock source and divider */
if (PWM_4 >= pwm) {
/* default to 20MHz / 2 */
pwmout_clk_set(obj, 1, 0);
if (PWM_4 == pwm) {
obj->period_ticks_max = 0x1FF8UL;
obj->period_ticks_min = 0x0008UL;
} else {
obj->period_ticks_max = 0x20000UL;
obj->period_ticks_min = 0x00002UL;
}
obj->base_clk_ptr = &(BaseClk_PWM[0]);
} else if (PWM_5 == pwm) {
/* default to 32KHz / 2 */
pwmout_clk_set(obj, 0, 0);
obj->period_ticks_max = 0x7000UL;
obj->period_ticks_min = 0x0800UL;
obj->base_clk_ptr = &(BaseClk_PWM[1]);
} else {
/* default to 20MHz / 2 */
pwmout_clk_set(obj, 1, 0);
//do not need to div
obj->period_ticks_max = 0x0FFUL; // TBD
obj->period_ticks_min = 0x001UL;
obj->base_clk_ptr = &(BaseClk_PWM[2]);
}
// default to half of max period
if (PWM_5 >= pwm) {
pwmout_period_us(obj, (obj->period_ticks_max * 1e6) / (*(obj->base_clk_ptr)) / 2);
}
//PWM6 PWM7 has no period
pwmout_write (obj, 0.5f);
// Wire pinout
pinmap_pinout(pin, PinMap_PWM);
}
void pwmout_free(pwmout_t* obj)
{
/* Disable PWM Clock-gating */
PWM_CLKGATE_REG &= ~(0x01UL << 2);
}
void pwmout_write(pwmout_t* obj, float value)
{
uint32_t ticks;
/* Check if already started */
if (is_pwmout_started(obj))
pwmout_stop(obj);
if (value < 0.0f) {
value = 0.0;
} else if (value > 1.0f) {
value = 1.0;
}
/* Set channel match to percentage */
if (PWM_5 >= (PWMName)obj->channel) {
ticks = (uint32_t)((float)(obj->period_ticks) * value);
}
else if (PWM_6 <= (PWMName)obj->channel) {
obj->period_ticks = 0xFF;
ticks = (uint32_t)((float)(obj->period_ticks) * value);
}
if (0 == ticks) {
obj->pulsewidth_ticks = 0;
} else {
/* Update Hw reg */
if (ticks != obj->pulsewidth_ticks) {
obj->pulsewidth_ticks = ticks;
pwmout_update_cfgreg(obj);
}
}
/* Start PWM module */
pwmout_start(obj);
}
float pwmout_read(pwmout_t* obj)
{
float v = (float)(obj->pulsewidth_ticks) / (float)(obj->period_ticks);
return (v > 1.0f) ? (1.0f) : (v);
}
void pwmout_period(pwmout_t* obj, float seconds)
{
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t* obj, int ms)
{
pwmout_period_us(obj, ms * 1000);
}
/* Set the PWM period, keeping the duty cycle the same. */
void pwmout_period_us(pwmout_t* obj, int us)
{
uint32_t ticks;
MBED_ASSERT(PWM_5 >= (PWMName)(obj->channel));
/* Check if already started */
if (is_pwmout_started(obj))
pwmout_stop(obj);
/* Calculate number of ticks */
ticks = (uint64_t)(*(obj->base_clk_ptr)) * us / 1000000;
if (ticks != obj->period_ticks) {
float duty_ratio;
/* Preserve the duty ratio */
if (0 == obj->period_ticks)
duty_ratio = 0.5f;
else
duty_ratio = (float)obj->pulsewidth_ticks / (float)obj->period_ticks;
obj->period_ticks = ticks;
obj->pulsewidth_ticks = (uint32_t)(ticks * duty_ratio);
MBED_ASSERT(obj->period_ticks >= obj->pulsewidth_ticks);
pwmout_update_cfgreg(obj);
}
/* Start PWM module */
pwmout_start(obj);
}
void pwmout_pulsewidth(pwmout_t* obj, float seconds)
{
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms)
{
pwmout_pulsewidth_us(obj, ms * 1000);
}
/* Set the PWM pulsewidth, keeping the period the same. */
void pwmout_pulsewidth_us(pwmout_t* obj, int us)
{
uint32_t ticks;
MBED_ASSERT(PWM_7 >= (PWMName)(obj->channel));
/* Check if already started */
if (is_pwmout_started(obj))
pwmout_stop(obj);
/* Calculate number of ticks */
ticks = (uint64_t)(*(obj->base_clk_ptr)) * us / 1000000;
if (ticks != obj->pulsewidth_ticks) {
obj->pulsewidth_ticks = ticks;
MBED_ASSERT(obj->period_ticks >= obj->pulsewidth_ticks);
pwmout_update_cfgreg(obj);
}
/* Start PWM module */
pwmout_start(obj);
}
static uint8_t is_pwmout_started(pwmout_t* obj)
{
uint8_t retVal = 0;
uint32_t reg_val;
MBED_ASSERT(PWM_7 >= (PWMName)(obj->channel));
if (PWM_3 >= (PWMName)obj->channel) {
reg_val = (EXIF_PWM_EN_REG >> 8) & 0x0FUL;
if (reg_val & (0x01UL << obj->channel))
retVal = 1;
} else if (PWM_4 == (PWMName)obj->channel) {
if (*(obj->CFGR) & (0x01UL << 1))
retVal = 1;
} else if (PWM_5 == (PWMName)obj->channel) {
retVal = 1;
} else {
if (*(obj->CFGR) & (0x01UL << 16))
retVal = 1;
}
return retVal;
}
static void pwmout_start(pwmout_t* obj)
{
MBED_ASSERT(PWM_7 >= (PWMName)(obj->channel));
if (obj->period_ticks == obj->pulsewidth_ticks) {
gpio_t gpio;
gpio_init_out(&gpio, obj->pin);
gpio_write(&gpio, 1);
//mbed_error_printf("100\n");
} else if (0 == obj->pulsewidth_ticks) {
gpio_t gpio;
gpio_init_out(&gpio, obj->pin);
gpio_write(&gpio, 0);
//mbed_error_printf("0\n");
} else {
pinmap_pinout(obj->pin, PinMap_PWM);
}
if (PWM_3 >= (PWMName)obj->channel) {
EXIF_PWM_EN_REG |= (0x01UL << (8 + obj->channel));
} else if (PWM_4 == (PWMName)obj->channel) {
*(obj->CFGR) |= 0x01UL;
} else if (PWM_5 == (PWMName)obj->channel) {
/* Nothing to be done */
} else {
*(obj->CFGR) |= (0x01UL << 16);
}
}
static void pwmout_stop(pwmout_t* obj)
{
MBED_ASSERT(PWM_7 >= (PWMName)(obj->channel));
if (obj->period_ticks == obj->pulsewidth_ticks) {
gpio_t gpio;
gpio_init_out(&gpio, obj->pin);
gpio_write(&gpio, 0);
}
if (PWM_3 >= (PWMName)obj->channel) {
EXIF_PWM_EN_REG &= ~(0x01UL << (8 + obj->channel));
} else if (PWM_4 == (PWMName)(obj->channel)) {
*(obj->CFGR) &= ~0x01UL;
} else if (PWM_5 == (PWMName)(obj->channel)) {
/* Nothing to be done */
} else {
*(obj->CFGR) &= ~(0x01UL << 16);
}
}
static void pwmout_update_cfgreg(pwmout_t* obj)
{
int err_code = 0;
if (obj->pulsewidth_ticks < obj->period_ticks_min) {
obj->pulsewidth_ticks = obj->period_ticks_min;
err_code = 1; // too small duty
if (obj->period_ticks < obj->period_ticks_min) {
obj->period_ticks = obj->period_ticks_min;
err_code = 2; // too small duty & period
}
}
if (obj->period_ticks > obj->period_ticks_max) {
obj->period_ticks = obj->period_ticks_max;
err_code = 3; // too large period
if (obj->pulsewidth_ticks > obj->period_ticks_max) {
obj->pulsewidth_ticks = obj->period_ticks_max;
err_code = 4; // too large period & duty
}
}
if (0 != err_code) {
mbed_error_printf("PwmCfgErr:%d\r\n",err_code);
}
if (PWM_3 >= (PWMName)(obj->channel)) {
if (obj->period_ticks == obj->pulsewidth_ticks) {
*(obj->CFGR) = ((obj->pulsewidth_ticks - 1) << 16);
} else {
*(obj->CFGR) = ((obj->period_ticks - obj->pulsewidth_ticks - 1) & 0xFFFFUL) |
((obj->pulsewidth_ticks - 1) << 16);
}
} else if (PWM_4 == (PWMName)(obj->channel)) {
*(obj->CFGR) = ((obj->pulsewidth_ticks & ~0x07UL) << ( 4 - 3)) |
((obj->period_ticks & ~0x07UL) << (16 - 3));
} else if (PWM_5 == (PWMName)(obj->channel)) {
/* TBD */
uint32_t reg_val = *(obj->CFGR) & ~(0xFUL << 4) & ~(0x7UL << 16);
uint32_t lpg_field_ontime = (0x01UL << 4) & (0xFUL << 4); // to be confirm
uint32_t lpg_field_period = (obj->period_ticks << 4) & (0x7UL << 16);
*(obj->CFGR) = reg_val | lpg_field_ontime | lpg_field_period;
} else if (PWM_6 == (PWMName)(obj->channel)) {
uint32_t reg_val = *(obj->CFGR) & ~(0xFF);
*(obj->CFGR) = reg_val | (obj->pulsewidth_ticks);//1~254
} else{
//PWM_7
uint32_t reg_val = *(obj->CFGR) & ~(0xFF);
*(obj->CFGR) = reg_val | (obj->pulsewidth_ticks);//1~254
}
}
const PinMap *pwmout_pinmap()
{
return PinMap_PWM;
}
#endif