mbed-os/targets/TARGET_ONSEMI/TARGET_NCS36510/ncs36510_spi.c

171 lines
6.3 KiB
C

/**
******************************************************************************
* @file spi.c
* @brief Implementation of a IPC 7207 SPI master driver
* @internal
* @author ON Semiconductor
* @version $Rev: $
* @date $Date: 2016-02-05 $
******************************************************************************
* Copyright 2016 Semiconductor Components Industries LLC (d/b/a “ON Semiconductor”).
* All rights reserved. This software and/or documentation is licensed by ON Semiconductor
* under limited terms and conditions. The terms and conditions pertaining to the software
* and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
* (“ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software”) and
* if applicable the software license agreement. Do not use this software and/or
* documentation unless you have carefully read and you agree to the limited terms and
* conditions. By using this software and/or documentation, you agree to the limited
* terms and conditions.
*
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
* @endinternal
*
* @ingroup spi
*
* @details
*
*/
#if DEVICE_SPI
#include "spi.h"
#include "clock.h"
#include "objects.h"
#include "spi_api.h"
#include "PeripheralPins.h"
#include "spi_ipc7207_map.h"
#include "crossbar.h"
#include "pad.h"
#include "mbed_assert.h"
/** Initializes a spi device.
* @details
*
* @param obj A spi device instance.
* @param mosi pin to used as SPI MOSI
* @param miso pin to used as SPI MISO
* @param sclk pin to used as SPI SCLK
* @return None
*/
void fSpiInit(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
uint32_t clockDivisor;
/* determine the SPI to use */
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data_1 = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_data_2 = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj->membase = (SpiIpc7207Reg_pt)pinmap_merge(spi_data_1, spi_data_2);
MBED_ASSERT((int)obj->membase != NC);
/* Check device to be activated */
if(obj->membase == SPI1REG) {
/* SPI 1 selected */
CLOCK_ENABLE(CLOCK_SPI); /* Enable clock */
} else {
/* SPI 2 selected */
CLOCK_ENABLE(CLOCK_SPI2); /* Enable clock */
}
CLOCK_ENABLE(CLOCK_CROSSB);
/* Cross bar setting: Map GPIOs to SPI */
pinmap_pinout(sclk, PinMap_SPI_SCLK);
pinmap_pinout(mosi, PinMap_SPI_MOSI);
/* Configure GPIO Direction */
CLOCK_ENABLE(CLOCK_GPIO);
GPIOREG->W_OUT |= ((True << sclk) | (True << mosi) | (True << ssel)); /* Set pins as output */
GPIOREG->W_IN |= (True << miso); /* Set pin as input */
/* Pad settings */
CLOCK_ENABLE(CLOCK_PAD);
pin_mode(sclk, PushPullPullDown);
pin_mode(mosi, PushPullPullDown);
/* PAD drive strength */
PadReg_t *padRegOffset = (PadReg_t*)(PADREG_BASE + (sclk * PAD_REG_ADRS_BYTE_SIZE));
padRegOffset->PADIO0.BITS.POWER = True; /* sclk: Drive strength */
padRegOffset->PADIO1.BITS.POWER = True; /* mosi: Drive strength */
if(miso != NC) {
pinmap_pinout(miso, PinMap_SPI_MISO); /* Cross bar settings */
pin_mode(miso, OpenDrainNoPull); /* Pad setting */
padRegOffset->PADIO2.BITS.POWER = True; /* miso: Drive strength */
}
if(ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL); /* Cross bar settings */
pin_mode(ssel, PushPullPullUp); /* Pad setting */
padRegOffset->PADIO3.BITS.POWER = True; /* ssel: Drive strength */
SPI1REG->SLAVE_SELECT.BITS.SS_ENABLE = SPI_SLAVE_SELECT_NORM_BEHAVE; /* Slave select: Normal behavior */
}
CLOCK_DISABLE(CLOCK_PAD);
CLOCK_DISABLE(CLOCK_GPIO);
CLOCK_DISABLE(CLOCK_CROSSB);
/* disable/reset the spi port: Clear control register*/
obj->membase->CONTROL.WORD = False;
/* set default baud rate to 1MHz */
clockDivisor = ((fClockGetPeriphClockfrequency() / SPI_DEFAULT_SPEED) >> True) - True;
obj->membase->FDIV = clockDivisor;
/* set tx/rx fifos watermarks */ /* TODO water mark level 1 byte ?*/
obj->membase->TX_WATERMARK = True;
obj->membase->RX_WATERMARK = True;
/* DIsable and clear IRQs */ /* TODO sync api, do not need irq ?*/
obj->membase->IRQ_ENABLE = False;
obj->membase->IRQ_CLEAR = SPI_BYTE_MASK; /* Clear all */
/* configure slave select */
obj->membase->SLAVE_SELECT.WORD = SPI_SLAVE_SELECT_DEFAULT;
obj->membase->SLAVE_SELECT_POLARITY = False;
/* Configure control register parameters: 8 bits, master, CPOL = 0, Idle low. CPHA = 0, First transmit occurs before first edge of SCLK. MSB first. Sample incoming data on opposite edge of SCLK from when outgoing data is driven. enable the spi port */
obj->membase->CONTROL.WORD = SPI_DEFAULT_CONFIG;
}
/** Close a spi device.
* @details
*
* @param obj The spi device to close.
* @return None
*/
void fSpiClose(spi_t *obj)
{
/* disable the spi port */
obj->membase->CONTROL.BITS.ENABLE = False;
/* disable interruption associated with spi */
NVIC_DisableIRQ(obj->irq);
}
/**
* Write data to an SPI device.
* The data is written from the buffer into the transmit register.
* This function blocks untill write and read happens.
*
* @param obj The device to write to.
* @param buf The buffer to write from (the contents of the buffer may not be modified).
* @return the value received during send
*/
int fSpiWriteB(spi_t *obj, uint32_t const buf)
{
int byte;
while((obj->membase->STATUS.BITS.TX_FULL == True) && (obj->membase->STATUS.BITS.RX_FULL == True)); /* Wait till Tx/Rx status is full */
obj->membase->TX_DATA = buf;
while (obj->membase->STATUS.BITS.RX_EMPTY == True); /* Wait till Receive status is empty */
byte = obj->membase->RX_DATA;
return byte;
}
#endif /* DEVICE_SPI */