mbed-os/targets/TARGET_ONSEMI/TARGET_NCS36510/rtc.c

296 lines
12 KiB
C

/**
*******************************************************************************
* @file rtc.c
* @brief Implementation of a Rtc driver
* @internal
* @author ON Semiconductor
* $Rev: 3525 $
* $Date: 2015-07-20 15:24:25 +0530 (Mon, 20 Jul 2015) $
******************************************************************************
* Copyright 2016 Semiconductor Components Industries LLC (d/b/a “ON Semiconductor”).
* All rights reserved. This software and/or documentation is licensed by ON Semiconductor
* under limited terms and conditions. The terms and conditions pertaining to the software
* and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
* (“ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software”) and
* if applicable the software license agreement. Do not use this software and/or
* documentation unless you have carefully read and you agree to the limited terms and
* conditions. By using this software and/or documentation, you agree to the limited
* terms and conditions.
*
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
* @endinternal
*
* @ingroup rtc
*
* @details
* A real-time clock (RTC) is a computer clock ,that keeps track of the current time. The heart of the RTC is a series of
* freely running counters one for each time unit, The series of counters is linked as follows: a roll over event of
* the seconds counter produces a minutes enable pulse; a roll over event of the minutes counter produces an hours
* enable pulse, etc.Note that all Counter registers are in an undefined state on power-up.
* Use the Reset bit in the Control Register to reset the counters to their default values.
* DIVISOR is the register containing the value to divide the clock frequency to produce 1Hz strobe ; 1Hz strobe is used
* internally to time the incrementing of the Seconds Counter.
* There is a set of register to set the values in the counter for each time unit.from where time is start to increment.
* There is another set of register to set the ALARM ...Each of the Alarm Registers can be programmed with a value that
* is used to compare to a Counter Register in order to produce an alarm (an interrupt) when the values match.
* There is a programmable bit in each Alarm Register that determines if the alarm occurs upon a value match, or
* if the alarm occurs upon a Counter increment condition.
*
*/
#include "rtc.h"
#include "mbed_assert.h"
#include "lp_ticker_api.h"
static uint16_t SubSecond;
static uint64_t LastRtcTimeus;
/* See rtc.h for details */
void fRtcInit(void)
{
CLOCK_ENABLE(CLOCK_RTC); /* enable rtc peripheral */
CLOCKREG->CCR.BITS.RTCEN = True; /* Enable RTC clock 32K */
/* Reset RTC control register */
RTCREG->CONTROL.WORD = False;
/* Initialize all counters */
RTCREG->SECOND_COUNTER = False;
RTCREG->SUB_SECOND_COUNTER = False;
RTCREG->SECOND_ALARM = False;
RTCREG->SUB_SECOND_ALARM = False;
LastRtcTimeus = 0;
/* Reset RTC Status register */
RTCREG->STATUS.WORD = False;
/* Clear interrupt status */
RTCREG->INT_CLEAR.WORD = False;
/* Start sec & sub_sec counter */
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);/* Wait previous write to complete */
RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
(True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
/* enable interruption associated with the rtc at NVIC level */
NVIC_SetVector(Rtc_IRQn,(uint32_t)fRtcHandler); /* TODO define lp_ticker_isr */
NVIC_ClearPendingIRQ(Rtc_IRQn);
NVIC_EnableIRQ(Rtc_IRQn);
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
return;
}
/* See rtc.h for details */
void fRtcFree(void)
{
/* Reset RTC control register */
RTCREG->CONTROL.WORD = False;
/* disable interruption associated with the rtc */
NVIC_DisableIRQ(Rtc_IRQn);
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
}
/* See rtc.h for details */
void fRtcSetInterrupt(uint32_t timestamp)
{
SubSecond = False;
uint32_t Second = False, EnableInterrupt = False;
uint8_t DividerAdjust = 1;
if(timestamp) {
if(timestamp >= RTC_SEC_TO_US) {
/* TimeStamp is big enough to set second alarm */
Second = ((timestamp / RTC_SEC_TO_US) & RTC_SEC_MASK); /* Convert micro second to second */
RTCREG->SECOND_ALARM = Second; /* Write to alarm register */
/* Enable second interrupt */
EnableInterrupt = True << RTC_CONTROL_SEC_CNT_INT_BIT_POS;
}
timestamp = timestamp - Second * RTC_SEC_TO_US; /* Take out micro second for sub second alarm */
if(timestamp > False) {
/* We have some thing for sub second */
/* Convert micro second to sub_seconds(each count = 30.5 us) */
if(timestamp > 131000) {
DividerAdjust = 100;
}
volatile uint64_t Temp = (timestamp / DividerAdjust * RTC_CLOCK_HZ);
Temp = (uint64_t)(Temp / RTC_SEC_TO_US * DividerAdjust);
SubSecond = Temp & RTC_SUB_SEC_MASK;
if(SubSecond <= 5) {
SubSecond = 0;
}
if(SubSecond > False) {
/* Second interrupt not enabled */
/* Set SUB SEC_ALARM */
RTCREG->SUB_SECOND_ALARM = SubSecond; /* Write to sub second alarm */
/* Enable sub second interrupt */
EnableInterrupt |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS);
}
}
RTCREG->CONTROL.WORD |= EnableInterrupt;
/* Enable RTC interrupt */
NVIC_EnableIRQ(Rtc_IRQn);
/* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) |
(True << RTC_STATUS_SEC_ALARM_WRT_BIT_POS) |
(True << RTC_STATUS_CONTROL_WRT_BIT_POS))) == True);
}
return;
}
/* See rtc.h for details */
void fRtcDisableInterrupt(void)
{
/* Disable RTC interrupt */
NVIC_DisableIRQ(Rtc_IRQn);
}
/* See rtc.h for details */
void fRtcEnableInterrupt(void)
{
/* Enable RTC interrupt */
NVIC_EnableIRQ(Rtc_IRQn);
}
/* See rtc.h for details */
void fRtcClearInterrupt(void)
{
/* Disable subsec/sec interrupt */
/* Clear sec & sub_sec interrupts */
RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) |
(True << RTC_INT_CLR_SEC_BIT_POS));
while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) |
(True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS))) == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
}
/* See rtc.h for details */
uint64_t fRtcRead(void)
{
uint32_t Second;
uint16_t SubSecond;
/* Hardware Bug fix: The rollover of the sub-second counter initiates the increment of the second counter.
* That means there is one cycle where the sub-second has rolled back to zero and the second counter has not incremented
* and a read during that cycle will be incorrect. That will occur for one RTC cycle and that is about 31us of exposure.
* If you read a zero in the sub-second counter then increment the second counter by 1.
* Alternatively, subtract 1 from the Sub-seconds counter to align the Second and Sub-Second rollover.
*/
/* Read the Second and Sub-second counters, then read the Second counter again.
* If it changed, then the Second rolled over while reading Sub-seconds, so go back and read them both again.
*/
do {
Second = RTCREG->SECOND_COUNTER; /* Get SEC_COUNTER reg value */
SubSecond = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK; /* Get SUB_SEC_COUNTER reg value */
} while (Second != RTCREG->SECOND_COUNTER); /* Repeat if the second has changed */
//note: casting to float removed to avoid reduction in resolution
uint64_t RtcTimeus = ((uint64_t)SubSecond * RTC_SEC_TO_US / RTC_CLOCK_HZ) + ((uint64_t)Second * RTC_SEC_TO_US);
/*check that the time did not go backwards */
MBED_ASSERT(RtcTimeus >= LastRtcTimeus);
LastRtcTimeus = RtcTimeus;
return RtcTimeus;
}
/* See rtc.h for details */
void fRtcWrite(uint64_t RtcTimeus)
{
uint32_t Second = False;
uint16_t SubSecond = False;
/* Stop RTC */
RTCREG->CONTROL.WORD &= ~((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
(True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
if(RtcTimeus > RTC_SEC_TO_US) {
/* TimeStamp is big enough to set second counter */
Second = ((RtcTimeus / RTC_SEC_TO_US) & RTC_SEC_MASK);
}
RTCREG->SECOND_COUNTER = Second;
RtcTimeus = RtcTimeus - (Second * RTC_SEC_TO_US);
if(RtcTimeus > False) {
/* Convert TimeStamp to sub_seconds */
SubSecond = (uint16_t)((float)(RtcTimeus * RTC_CLOCK_HZ / RTC_SEC_TO_US)) & RTC_SUB_SEC_MASK;
}
/* Set SUB_SEC_ALARM */
RTCREG->SUB_SECOND_COUNTER = SubSecond;
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
/* Start RTC */
RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
(True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
}
/* See rtc.h for details */
void fRtcHandler(void)
{
/* SUB_SECOND/SECOND interrupt occured */
volatile uint32_t TempStatus = RTCREG->STATUS.WORD;
/* Disable RTC interrupt */
NVIC_DisableIRQ(Rtc_IRQn);
/* Clear sec & sub_sec interrupts */
RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) |
(True << RTC_INT_CLR_SEC_BIT_POS));
/* TODO ANDing SUB_SEC & SEC interrupt - work around for RTC issue - will be resolved in REV G */
if(TempStatus & RTC_SEC_INT_STATUS_MASK) {
/* Second interrupt occured */
if(SubSecond > False) {
/* Set SUB SEC_ALARM */
RTCREG->SUB_SECOND_ALARM = SubSecond + RTCREG->SUB_SECOND_COUNTER;
/* Enable sub second interrupt */
RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS);
} else {
/* We reach here after second interrupt is occured */
RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) |
(True << RTC_CONTROL_SEC_CNT_INT_BIT_POS);
}
} else {
/* We reach here after sub_second or (Sub second + second) interrupt occured */
/* Disable Second and sub_second interrupt */
RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) |
(True << RTC_CONTROL_SEC_CNT_INT_BIT_POS);
}
NVIC_EnableIRQ(Rtc_IRQn);
/* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) |
(True << RTC_STATUS_CONTROL_WRT_BIT_POS) |
(True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) |
(True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS))) == True);
lp_ticker_irq_handler();
}
boolean fIsRtcEnabled(void)
{
if(RTCREG->CONTROL.BITS.SUB_SEC_COUNTER_EN | RTCREG->CONTROL.BITS.SEC_COUNTER_EN) {
return True;
} else {
return False;
}
}