mirror of https://github.com/ARMmbed/mbed-os.git
296 lines
12 KiB
C
296 lines
12 KiB
C
/**
|
|
*******************************************************************************
|
|
* @file rtc.c
|
|
* @brief Implementation of a Rtc driver
|
|
* @internal
|
|
* @author ON Semiconductor
|
|
* $Rev: 3525 $
|
|
* $Date: 2015-07-20 15:24:25 +0530 (Mon, 20 Jul 2015) $
|
|
******************************************************************************
|
|
* Copyright 2016 Semiconductor Components Industries LLC (d/b/a “ON Semiconductor”).
|
|
* All rights reserved. This software and/or documentation is licensed by ON Semiconductor
|
|
* under limited terms and conditions. The terms and conditions pertaining to the software
|
|
* and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
|
|
* (“ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software”) and
|
|
* if applicable the software license agreement. Do not use this software and/or
|
|
* documentation unless you have carefully read and you agree to the limited terms and
|
|
* conditions. By using this software and/or documentation, you agree to the limited
|
|
* terms and conditions.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
|
|
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
|
|
* ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
|
|
* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
|
|
* @endinternal
|
|
*
|
|
* @ingroup rtc
|
|
*
|
|
* @details
|
|
* A real-time clock (RTC) is a computer clock ,that keeps track of the current time. The heart of the RTC is a series of
|
|
* freely running counters one for each time unit, The series of counters is linked as follows: a roll over event of
|
|
* the seconds counter produces a minutes enable pulse; a roll over event of the minutes counter produces an hours
|
|
* enable pulse, etc.Note that all Counter registers are in an undefined state on power-up.
|
|
* Use the Reset bit in the Control Register to reset the counters to their default values.
|
|
* DIVISOR is the register containing the value to divide the clock frequency to produce 1Hz strobe ; 1Hz strobe is used
|
|
* internally to time the incrementing of the Seconds Counter.
|
|
* There is a set of register to set the values in the counter for each time unit.from where time is start to increment.
|
|
* There is another set of register to set the ALARM ...Each of the Alarm Registers can be programmed with a value that
|
|
* is used to compare to a Counter Register in order to produce an alarm (an interrupt) when the values match.
|
|
* There is a programmable bit in each Alarm Register that determines if the alarm occurs upon a value match, or
|
|
* if the alarm occurs upon a Counter increment condition.
|
|
*
|
|
*/
|
|
#include "rtc.h"
|
|
#include "mbed_assert.h"
|
|
#include "lp_ticker_api.h"
|
|
|
|
static uint16_t SubSecond;
|
|
static uint64_t LastRtcTimeus;
|
|
|
|
/* See rtc.h for details */
|
|
void fRtcInit(void)
|
|
{
|
|
CLOCK_ENABLE(CLOCK_RTC); /* enable rtc peripheral */
|
|
CLOCKREG->CCR.BITS.RTCEN = True; /* Enable RTC clock 32K */
|
|
|
|
/* Reset RTC control register */
|
|
RTCREG->CONTROL.WORD = False;
|
|
|
|
/* Initialize all counters */
|
|
RTCREG->SECOND_COUNTER = False;
|
|
RTCREG->SUB_SECOND_COUNTER = False;
|
|
RTCREG->SECOND_ALARM = False;
|
|
RTCREG->SUB_SECOND_ALARM = False;
|
|
LastRtcTimeus = 0;
|
|
|
|
/* Reset RTC Status register */
|
|
RTCREG->STATUS.WORD = False;
|
|
|
|
/* Clear interrupt status */
|
|
RTCREG->INT_CLEAR.WORD = False;
|
|
|
|
/* Start sec & sub_sec counter */
|
|
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);/* Wait previous write to complete */
|
|
RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
|
|
(True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
|
|
|
|
/* enable interruption associated with the rtc at NVIC level */
|
|
NVIC_SetVector(Rtc_IRQn,(uint32_t)fRtcHandler); /* TODO define lp_ticker_isr */
|
|
NVIC_ClearPendingIRQ(Rtc_IRQn);
|
|
NVIC_EnableIRQ(Rtc_IRQn);
|
|
|
|
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
|
|
|
|
return;
|
|
}
|
|
|
|
/* See rtc.h for details */
|
|
void fRtcFree(void)
|
|
{
|
|
/* Reset RTC control register */
|
|
RTCREG->CONTROL.WORD = False;
|
|
|
|
/* disable interruption associated with the rtc */
|
|
NVIC_DisableIRQ(Rtc_IRQn);
|
|
|
|
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
|
|
}
|
|
|
|
/* See rtc.h for details */
|
|
void fRtcSetInterrupt(uint32_t timestamp)
|
|
{
|
|
SubSecond = False;
|
|
uint32_t Second = False, EnableInterrupt = False;
|
|
uint8_t DividerAdjust = 1;
|
|
|
|
if(timestamp) {
|
|
if(timestamp >= RTC_SEC_TO_US) {
|
|
/* TimeStamp is big enough to set second alarm */
|
|
Second = ((timestamp / RTC_SEC_TO_US) & RTC_SEC_MASK); /* Convert micro second to second */
|
|
RTCREG->SECOND_ALARM = Second; /* Write to alarm register */
|
|
|
|
/* Enable second interrupt */
|
|
EnableInterrupt = True << RTC_CONTROL_SEC_CNT_INT_BIT_POS;
|
|
}
|
|
timestamp = timestamp - Second * RTC_SEC_TO_US; /* Take out micro second for sub second alarm */
|
|
if(timestamp > False) {
|
|
/* We have some thing for sub second */
|
|
|
|
/* Convert micro second to sub_seconds(each count = 30.5 us) */
|
|
if(timestamp > 131000) {
|
|
DividerAdjust = 100;
|
|
}
|
|
|
|
volatile uint64_t Temp = (timestamp / DividerAdjust * RTC_CLOCK_HZ);
|
|
Temp = (uint64_t)(Temp / RTC_SEC_TO_US * DividerAdjust);
|
|
SubSecond = Temp & RTC_SUB_SEC_MASK;
|
|
|
|
if(SubSecond <= 5) {
|
|
SubSecond = 0;
|
|
}
|
|
|
|
if(SubSecond > False) {
|
|
/* Second interrupt not enabled */
|
|
|
|
/* Set SUB SEC_ALARM */
|
|
RTCREG->SUB_SECOND_ALARM = SubSecond; /* Write to sub second alarm */
|
|
|
|
/* Enable sub second interrupt */
|
|
EnableInterrupt |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS);
|
|
}
|
|
}
|
|
|
|
RTCREG->CONTROL.WORD |= EnableInterrupt;
|
|
/* Enable RTC interrupt */
|
|
NVIC_EnableIRQ(Rtc_IRQn);
|
|
|
|
/* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
|
|
while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) |
|
|
(True << RTC_STATUS_SEC_ALARM_WRT_BIT_POS) |
|
|
(True << RTC_STATUS_CONTROL_WRT_BIT_POS))) == True);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* See rtc.h for details */
|
|
void fRtcDisableInterrupt(void)
|
|
{
|
|
/* Disable RTC interrupt */
|
|
NVIC_DisableIRQ(Rtc_IRQn);
|
|
}
|
|
|
|
/* See rtc.h for details */
|
|
void fRtcEnableInterrupt(void)
|
|
{
|
|
/* Enable RTC interrupt */
|
|
NVIC_EnableIRQ(Rtc_IRQn);
|
|
}
|
|
|
|
/* See rtc.h for details */
|
|
void fRtcClearInterrupt(void)
|
|
{
|
|
/* Disable subsec/sec interrupt */
|
|
/* Clear sec & sub_sec interrupts */
|
|
RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) |
|
|
(True << RTC_INT_CLR_SEC_BIT_POS));
|
|
|
|
while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) |
|
|
(True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS))) == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
|
|
}
|
|
|
|
/* See rtc.h for details */
|
|
uint64_t fRtcRead(void)
|
|
{
|
|
uint32_t Second;
|
|
uint16_t SubSecond;
|
|
|
|
/* Hardware Bug fix: The rollover of the sub-second counter initiates the increment of the second counter.
|
|
* That means there is one cycle where the sub-second has rolled back to zero and the second counter has not incremented
|
|
* and a read during that cycle will be incorrect. That will occur for one RTC cycle and that is about 31us of exposure.
|
|
* If you read a zero in the sub-second counter then increment the second counter by 1.
|
|
* Alternatively, subtract 1 from the Sub-seconds counter to align the Second and Sub-Second rollover.
|
|
*/
|
|
|
|
/* Read the Second and Sub-second counters, then read the Second counter again.
|
|
* If it changed, then the Second rolled over while reading Sub-seconds, so go back and read them both again.
|
|
*/
|
|
|
|
do {
|
|
Second = RTCREG->SECOND_COUNTER; /* Get SEC_COUNTER reg value */
|
|
SubSecond = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK; /* Get SUB_SEC_COUNTER reg value */
|
|
} while (Second != RTCREG->SECOND_COUNTER); /* Repeat if the second has changed */
|
|
|
|
//note: casting to float removed to avoid reduction in resolution
|
|
uint64_t RtcTimeus = ((uint64_t)SubSecond * RTC_SEC_TO_US / RTC_CLOCK_HZ) + ((uint64_t)Second * RTC_SEC_TO_US);
|
|
|
|
/*check that the time did not go backwards */
|
|
MBED_ASSERT(RtcTimeus >= LastRtcTimeus);
|
|
LastRtcTimeus = RtcTimeus;
|
|
|
|
return RtcTimeus;
|
|
}
|
|
|
|
/* See rtc.h for details */
|
|
void fRtcWrite(uint64_t RtcTimeus)
|
|
{
|
|
uint32_t Second = False;
|
|
uint16_t SubSecond = False;
|
|
/* Stop RTC */
|
|
RTCREG->CONTROL.WORD &= ~((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
|
|
(True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
|
|
|
|
if(RtcTimeus > RTC_SEC_TO_US) {
|
|
/* TimeStamp is big enough to set second counter */
|
|
Second = ((RtcTimeus / RTC_SEC_TO_US) & RTC_SEC_MASK);
|
|
}
|
|
RTCREG->SECOND_COUNTER = Second;
|
|
RtcTimeus = RtcTimeus - (Second * RTC_SEC_TO_US);
|
|
if(RtcTimeus > False) {
|
|
/* Convert TimeStamp to sub_seconds */
|
|
SubSecond = (uint16_t)((float)(RtcTimeus * RTC_CLOCK_HZ / RTC_SEC_TO_US)) & RTC_SUB_SEC_MASK;
|
|
}
|
|
/* Set SUB_SEC_ALARM */
|
|
RTCREG->SUB_SECOND_COUNTER = SubSecond;
|
|
|
|
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
|
|
/* Start RTC */
|
|
RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
|
|
(True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
|
|
|
|
while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
|
|
}
|
|
|
|
/* See rtc.h for details */
|
|
void fRtcHandler(void)
|
|
{
|
|
/* SUB_SECOND/SECOND interrupt occured */
|
|
volatile uint32_t TempStatus = RTCREG->STATUS.WORD;
|
|
|
|
/* Disable RTC interrupt */
|
|
NVIC_DisableIRQ(Rtc_IRQn);
|
|
|
|
/* Clear sec & sub_sec interrupts */
|
|
RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) |
|
|
(True << RTC_INT_CLR_SEC_BIT_POS));
|
|
|
|
/* TODO ANDing SUB_SEC & SEC interrupt - work around for RTC issue - will be resolved in REV G */
|
|
if(TempStatus & RTC_SEC_INT_STATUS_MASK) {
|
|
/* Second interrupt occured */
|
|
if(SubSecond > False) {
|
|
/* Set SUB SEC_ALARM */
|
|
RTCREG->SUB_SECOND_ALARM = SubSecond + RTCREG->SUB_SECOND_COUNTER;
|
|
/* Enable sub second interrupt */
|
|
RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS);
|
|
} else {
|
|
/* We reach here after second interrupt is occured */
|
|
RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) |
|
|
(True << RTC_CONTROL_SEC_CNT_INT_BIT_POS);
|
|
}
|
|
} else {
|
|
/* We reach here after sub_second or (Sub second + second) interrupt occured */
|
|
/* Disable Second and sub_second interrupt */
|
|
RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) |
|
|
(True << RTC_CONTROL_SEC_CNT_INT_BIT_POS);
|
|
}
|
|
|
|
NVIC_EnableIRQ(Rtc_IRQn);
|
|
|
|
/* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
|
|
while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) |
|
|
(True << RTC_STATUS_CONTROL_WRT_BIT_POS) |
|
|
(True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) |
|
|
(True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS))) == True);
|
|
|
|
lp_ticker_irq_handler();
|
|
}
|
|
|
|
boolean fIsRtcEnabled(void)
|
|
{
|
|
if(RTCREG->CONTROL.BITS.SUB_SEC_COUNTER_EN | RTCREG->CONTROL.BITS.SEC_COUNTER_EN) {
|
|
return True;
|
|
} else {
|
|
return False;
|
|
}
|
|
}
|