mbed-os/targets/TARGET_Maxim/TARGET_MAX32610/analogout_api.c

213 lines
8.1 KiB
C

/*******************************************************************************
* Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include "mbed_assert.h"
#include "analogout_api.h"
#include "clkman_regs.h"
#include "pwrman_regs.h"
#include "afe_regs.h"
#include "PeripheralPins.h"
//******************************************************************************
void analogout_init(dac_t *obj, PinName pin)
{
// Make sure pin is an analog pin we can use for ADC
DACName dac = (DACName)pinmap_peripheral(pin, PinMap_DAC);
MBED_ASSERT((DACName)dac != (DACName)NC);
// Set the object pointer
obj->dac = ((mxc_dac_regs_t*)MXC_DAC_GET_DAC((pin & 0x3)));
obj->dac_fifo = ((mxc_dac_fifo_regs_t*)MXC_DAC_GET_FIFO((pin & 0x3)));
obj->index = (pin & 0x3);
// Set the ADC clock to the system clock frequency
MXC_SET_FIELD(&MXC_CLKMAN->clk_ctrl, MXC_F_CLKMAN_CLK_CTRL_ADC_SOURCE_SELECT,
(MXC_F_CLKMAN_CLK_CTRL_ADC_GATE_N | (MXC_E_CLKMAN_ADC_SOURCE_SELECT_SYSTEM <<
MXC_F_CLKMAN_CLK_CTRL_ADC_SOURCE_SELECT_POS)));
// Setup the OPAMP in follower mode
switch(obj->index) {
case 0:
// Enable DAC clock
MXC_CLKMAN->clk_ctrl_14_dac0 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
// Enable OPAMP
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP0;
// Set the positive and negative inputs
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_A |
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP0 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP0),
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP0_POS) |
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP0_POS) |
(0x0 << MXC_F_AFE_CTRL4_DAC_SEL_A_POS)));
// Enable N and P channel inputs
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP0 |
MXC_F_AFE_CTRL3_EN_NCH_OPAMP0);
break;
case 1:
// Enable DAC clock
MXC_CLKMAN->clk_ctrl_15_dac1 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
// Enable OPAMP
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP1;
// Set the positive and negative inputs
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_B |
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP1 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP1),
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP1_POS) |
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP1_POS) |
(0x1 << MXC_F_AFE_CTRL4_DAC_SEL_B_POS)));
// Enable N and P channel inputs
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP1 |
MXC_F_AFE_CTRL3_EN_NCH_OPAMP1);
break;
case 2:
// Enable DAC clock
MXC_CLKMAN->clk_ctrl_16_dac2 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
// Enable OPAMP
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP2;
// Set the positive and negative inputs
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_C |
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP2 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP2),
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP2_POS) |
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP2_POS) |
(0x2 << MXC_F_AFE_CTRL4_DAC_SEL_C_POS)));
// Enable N and P channel inputs
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP2 |
MXC_F_AFE_CTRL3_EN_NCH_OPAMP2);
break;
case 3:
// Enable DAC clock
MXC_CLKMAN->clk_ctrl_17_dac3 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
// Enable OPAMP
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP3;
// Set the positive and negative inputs
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_D |
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP3 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP3),
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP3_POS) |
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP3_POS) |
(0x3 << MXC_F_AFE_CTRL4_DAC_SEL_D_POS)));
// Enable N and P channel inputs
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP3 |
MXC_F_AFE_CTRL3_EN_NCH_OPAMP3);
break;
}
// Enable AFE power
MXC_PWRMAN->pwr_rst_ctrl |= MXC_F_PWRMAN_PWR_RST_CTRL_AFE_POWERED;
// Setup internal voltage references
MXC_SET_FIELD(&MXC_AFE->ctrl1, (MXC_F_AFE_CTRL1_REF_DAC_VOLT_SEL | MXC_F_AFE_CTRL1_REF_ADC_VOLT_SEL),
(MXC_F_AFE_CTRL1_REF_ADC_POWERUP | MXC_F_AFE_CTRL1_REF_BLK_POWERUP |
(MXC_E_AFE_REF_VOLT_SEL_1500 << MXC_F_AFE_CTRL1_REF_ADC_VOLT_SEL_POS)));
// Disable interpolation
obj->dac->ctrl0 &= ~MXC_F_DAC_CTRL0_INTERP_MODE;
}
//******************************************************************************
void analogout_write(dac_t *obj, float value)
{
analogout_write_u16(obj, (uint16_t)((value/1.0) * 0xFFFF));
}
//******************************************************************************
void analogout_write_u16(dac_t *obj, uint16_t value)
{
// Enable the OPAMP
// Setup the OPAMP in follower mode
switch(obj->index) {
case 0:
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP0;
break;
case 1:
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP1;
break;
case 2:
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP2;
break;
case 3:
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP3;
break;
}
// Output 1 sample with minimal delay
obj->dac->rate |= 0x1;
// Set the start mode to output once data is in the FIFO
obj->dac->ctrl0 &= ~(MXC_F_DAC_CTRL0_START_MODE | MXC_F_DAC_CTRL0_OP_MODE);
// Enable the DAC
obj->dac->ctrl0 |= (MXC_F_DAC_CTRL0_POWER_MODE_2 |
MXC_F_DAC_CTRL0_POWER_MODE_1_0 | MXC_F_DAC_CTRL0_POWER_ON |
MXC_F_DAC_CTRL0_CLOCK_GATE_EN | MXC_F_DAC_CTRL0_CPU_START);
if(obj->index < 2) {
obj->out = (value);
obj->dac_fifo->output_16 = (obj->out);
} else {
// Convert 16 bits to 8 bits
obj->out = (value >> 8);
obj->dac_fifo->output_8 = (obj->out);
}
}
//******************************************************************************
float analogout_read(dac_t *obj)
{
return (((float)analogout_read_u16(obj) / (float)0xFFFF) * 1.5);
}
//******************************************************************************
uint16_t analogout_read_u16(dac_t *obj)
{
if(obj->index < 2) {
// Convert 12 bits to 16 bits
return (obj->out << 4);
} else {
// Convert 8 bits to 16 bits
return (obj->out << 8);
}
}