mirror of https://github.com/ARMmbed/mbed-os.git
213 lines
8.1 KiB
C
213 lines
8.1 KiB
C
/*******************************************************************************
|
|
* Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Except as contained in this notice, the name of Maxim Integrated
|
|
* Products, Inc. shall not be used except as stated in the Maxim Integrated
|
|
* Products, Inc. Branding Policy.
|
|
*
|
|
* The mere transfer of this software does not imply any licenses
|
|
* of trade secrets, proprietary technology, copyrights, patents,
|
|
* trademarks, maskwork rights, or any other form of intellectual
|
|
* property whatsoever. Maxim Integrated Products, Inc. retains all
|
|
* ownership rights.
|
|
*******************************************************************************
|
|
*/
|
|
|
|
#include "mbed_assert.h"
|
|
#include "analogout_api.h"
|
|
#include "clkman_regs.h"
|
|
#include "pwrman_regs.h"
|
|
#include "afe_regs.h"
|
|
#include "PeripheralPins.h"
|
|
|
|
//******************************************************************************
|
|
void analogout_init(dac_t *obj, PinName pin)
|
|
{
|
|
// Make sure pin is an analog pin we can use for ADC
|
|
DACName dac = (DACName)pinmap_peripheral(pin, PinMap_DAC);
|
|
MBED_ASSERT((DACName)dac != (DACName)NC);
|
|
|
|
// Set the object pointer
|
|
obj->dac = ((mxc_dac_regs_t*)MXC_DAC_GET_DAC((pin & 0x3)));
|
|
obj->dac_fifo = ((mxc_dac_fifo_regs_t*)MXC_DAC_GET_FIFO((pin & 0x3)));
|
|
obj->index = (pin & 0x3);
|
|
|
|
// Set the ADC clock to the system clock frequency
|
|
MXC_SET_FIELD(&MXC_CLKMAN->clk_ctrl, MXC_F_CLKMAN_CLK_CTRL_ADC_SOURCE_SELECT,
|
|
(MXC_F_CLKMAN_CLK_CTRL_ADC_GATE_N | (MXC_E_CLKMAN_ADC_SOURCE_SELECT_SYSTEM <<
|
|
MXC_F_CLKMAN_CLK_CTRL_ADC_SOURCE_SELECT_POS)));
|
|
|
|
|
|
// Setup the OPAMP in follower mode
|
|
switch(obj->index) {
|
|
case 0:
|
|
// Enable DAC clock
|
|
MXC_CLKMAN->clk_ctrl_14_dac0 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
|
|
|
|
// Enable OPAMP
|
|
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP0;
|
|
|
|
// Set the positive and negative inputs
|
|
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_A |
|
|
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP0 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP0),
|
|
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP0_POS) |
|
|
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP0_POS) |
|
|
(0x0 << MXC_F_AFE_CTRL4_DAC_SEL_A_POS)));
|
|
|
|
// Enable N and P channel inputs
|
|
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP0 |
|
|
MXC_F_AFE_CTRL3_EN_NCH_OPAMP0);
|
|
break;
|
|
case 1:
|
|
// Enable DAC clock
|
|
MXC_CLKMAN->clk_ctrl_15_dac1 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
|
|
|
|
// Enable OPAMP
|
|
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP1;
|
|
|
|
// Set the positive and negative inputs
|
|
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_B |
|
|
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP1 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP1),
|
|
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP1_POS) |
|
|
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP1_POS) |
|
|
(0x1 << MXC_F_AFE_CTRL4_DAC_SEL_B_POS)));
|
|
|
|
// Enable N and P channel inputs
|
|
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP1 |
|
|
MXC_F_AFE_CTRL3_EN_NCH_OPAMP1);
|
|
|
|
break;
|
|
case 2:
|
|
// Enable DAC clock
|
|
MXC_CLKMAN->clk_ctrl_16_dac2 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
|
|
|
|
// Enable OPAMP
|
|
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP2;
|
|
|
|
// Set the positive and negative inputs
|
|
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_C |
|
|
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP2 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP2),
|
|
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP2_POS) |
|
|
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP2_POS) |
|
|
(0x2 << MXC_F_AFE_CTRL4_DAC_SEL_C_POS)));
|
|
|
|
// Enable N and P channel inputs
|
|
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP2 |
|
|
MXC_F_AFE_CTRL3_EN_NCH_OPAMP2);
|
|
break;
|
|
case 3:
|
|
// Enable DAC clock
|
|
MXC_CLKMAN->clk_ctrl_17_dac3 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
|
|
|
|
// Enable OPAMP
|
|
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP3;
|
|
|
|
// Set the positive and negative inputs
|
|
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_D |
|
|
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP3 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP3),
|
|
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP3_POS) |
|
|
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP3_POS) |
|
|
(0x3 << MXC_F_AFE_CTRL4_DAC_SEL_D_POS)));
|
|
|
|
// Enable N and P channel inputs
|
|
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP3 |
|
|
MXC_F_AFE_CTRL3_EN_NCH_OPAMP3);
|
|
break;
|
|
}
|
|
|
|
// Enable AFE power
|
|
MXC_PWRMAN->pwr_rst_ctrl |= MXC_F_PWRMAN_PWR_RST_CTRL_AFE_POWERED;
|
|
|
|
// Setup internal voltage references
|
|
MXC_SET_FIELD(&MXC_AFE->ctrl1, (MXC_F_AFE_CTRL1_REF_DAC_VOLT_SEL | MXC_F_AFE_CTRL1_REF_ADC_VOLT_SEL),
|
|
(MXC_F_AFE_CTRL1_REF_ADC_POWERUP | MXC_F_AFE_CTRL1_REF_BLK_POWERUP |
|
|
(MXC_E_AFE_REF_VOLT_SEL_1500 << MXC_F_AFE_CTRL1_REF_ADC_VOLT_SEL_POS)));
|
|
|
|
// Disable interpolation
|
|
obj->dac->ctrl0 &= ~MXC_F_DAC_CTRL0_INTERP_MODE;
|
|
}
|
|
|
|
//******************************************************************************
|
|
void analogout_write(dac_t *obj, float value)
|
|
{
|
|
analogout_write_u16(obj, (uint16_t)((value/1.0) * 0xFFFF));
|
|
}
|
|
|
|
//******************************************************************************
|
|
void analogout_write_u16(dac_t *obj, uint16_t value)
|
|
{
|
|
// Enable the OPAMP
|
|
// Setup the OPAMP in follower mode
|
|
switch(obj->index) {
|
|
case 0:
|
|
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP0;
|
|
break;
|
|
case 1:
|
|
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP1;
|
|
break;
|
|
case 2:
|
|
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP2;
|
|
break;
|
|
case 3:
|
|
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP3;
|
|
break;
|
|
}
|
|
|
|
// Output 1 sample with minimal delay
|
|
obj->dac->rate |= 0x1;
|
|
|
|
// Set the start mode to output once data is in the FIFO
|
|
obj->dac->ctrl0 &= ~(MXC_F_DAC_CTRL0_START_MODE | MXC_F_DAC_CTRL0_OP_MODE);
|
|
|
|
// Enable the DAC
|
|
obj->dac->ctrl0 |= (MXC_F_DAC_CTRL0_POWER_MODE_2 |
|
|
MXC_F_DAC_CTRL0_POWER_MODE_1_0 | MXC_F_DAC_CTRL0_POWER_ON |
|
|
MXC_F_DAC_CTRL0_CLOCK_GATE_EN | MXC_F_DAC_CTRL0_CPU_START);
|
|
|
|
if(obj->index < 2) {
|
|
obj->out = (value);
|
|
obj->dac_fifo->output_16 = (obj->out);
|
|
|
|
} else {
|
|
// Convert 16 bits to 8 bits
|
|
obj->out = (value >> 8);
|
|
obj->dac_fifo->output_8 = (obj->out);
|
|
}
|
|
}
|
|
|
|
//******************************************************************************
|
|
float analogout_read(dac_t *obj)
|
|
{
|
|
return (((float)analogout_read_u16(obj) / (float)0xFFFF) * 1.5);
|
|
}
|
|
|
|
//******************************************************************************
|
|
uint16_t analogout_read_u16(dac_t *obj)
|
|
{
|
|
if(obj->index < 2) {
|
|
// Convert 12 bits to 16 bits
|
|
return (obj->out << 4);
|
|
} else {
|
|
// Convert 8 bits to 16 bits
|
|
return (obj->out << 8);
|
|
}
|
|
}
|