mirror of https://github.com/ARMmbed/mbed-os.git
3775 lines
116 KiB
C
3775 lines
116 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32h7xx_hal_spi.c
|
|
* @author MCD Application Team
|
|
* @brief SPI HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Serial Peripheral Interface (SPI) peripheral:
|
|
* + Initialization and de-initialization functions
|
|
* + IO operation functions
|
|
* + Peripheral Control functions
|
|
* + Peripheral State functions
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### How to use this driver #####
|
|
==============================================================================
|
|
[..]
|
|
The SPI HAL driver can be used as follows:
|
|
|
|
(#) Declare a SPI_HandleTypeDef handle structure, for example:
|
|
SPI_HandleTypeDef hspi;
|
|
|
|
(#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API:
|
|
(##) Enable the SPIx interface clock
|
|
(##) SPI pins configuration
|
|
(+++) Enable the clock for the SPI GPIOs
|
|
(+++) Configure these SPI pins as alternate function push-pull
|
|
(##) NVIC configuration if you need to use interrupt process or DMA process
|
|
(+++) Configure the SPIx interrupt priority
|
|
(+++) Enable the NVIC SPI IRQ handle
|
|
(##) DMA Configuration if you need to use DMA process
|
|
(+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive Stream/Channel
|
|
(+++) Enable the DMAx clock
|
|
(+++) Configure the DMA handle parameters
|
|
(+++) Configure the DMA Tx or Rx Stream/Channel
|
|
(+++) Associate the initialized hdma_tx handle to the hspi DMA Tx or Rx handle
|
|
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Stream/Channel
|
|
|
|
(#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS
|
|
management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure.
|
|
|
|
(#) Initialize the SPI registers by calling the HAL_SPI_Init() API:
|
|
(++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
|
|
by calling the customized HAL_SPI_MspInit() API.
|
|
[..]
|
|
Callback registration:
|
|
|
|
(#) The compilation flag USE_HAL_SPI_REGISTER_CALLBACKS when set to 1UL
|
|
allows the user to configure dynamically the driver callbacks.
|
|
Use Functions HAL_SPI_RegisterCallback() to register an interrupt callback.
|
|
|
|
Function HAL_SPI_RegisterCallback() allows to register following callbacks:
|
|
(+) TxCpltCallback : SPI Tx Completed callback
|
|
(+) RxCpltCallback : SPI Rx Completed callback
|
|
(+) TxRxCpltCallback : SPI TxRx Completed callback
|
|
(+) TxHalfCpltCallback : SPI Tx Half Completed callback
|
|
(+) RxHalfCpltCallback : SPI Rx Half Completed callback
|
|
(+) TxRxHalfCpltCallback : SPI TxRx Half Completed callback
|
|
(+) ErrorCallback : SPI Error callback
|
|
(+) AbortCpltCallback : SPI Abort callback
|
|
(+) MspInitCallback : SPI Msp Init callback
|
|
(+) MspDeInitCallback : SPI Msp DeInit callback
|
|
This function takes as parameters the HAL peripheral handle, the Callback ID
|
|
and a pointer to the user callback function.
|
|
|
|
|
|
(#) Use function HAL_SPI_UnRegisterCallback to reset a callback to the default
|
|
weak function.
|
|
HAL_SPI_UnRegisterCallback takes as parameters the HAL peripheral handle,
|
|
and the Callback ID.
|
|
This function allows to reset following callbacks:
|
|
(+) TxCpltCallback : SPI Tx Completed callback
|
|
(+) RxCpltCallback : SPI Rx Completed callback
|
|
(+) TxRxCpltCallback : SPI TxRx Completed callback
|
|
(+) TxHalfCpltCallback : SPI Tx Half Completed callback
|
|
(+) RxHalfCpltCallback : SPI Rx Half Completed callback
|
|
(+) TxRxHalfCpltCallback : SPI TxRx Half Completed callback
|
|
(+) ErrorCallback : SPI Error callback
|
|
(+) AbortCpltCallback : SPI Abort callback
|
|
(+) MspInitCallback : SPI Msp Init callback
|
|
(+) MspDeInitCallback : SPI Msp DeInit callback
|
|
|
|
By default, after the HAL_SPI_Init() and when the state is HAL_SPI_STATE_RESET
|
|
all callbacks are set to the corresponding weak functions:
|
|
examples HAL_SPI_MasterTxCpltCallback(), HAL_SPI_MasterRxCpltCallback().
|
|
Exception done for MspInit and MspDeInit functions that are
|
|
reset to the legacy weak functions in the HAL_SPI_Init()/ HAL_SPI_DeInit() only when
|
|
these callbacks are null (not registered beforehand).
|
|
If MspInit or MspDeInit are not null, the HAL_SPI_Init()/ HAL_SPI_DeInit()
|
|
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
|
|
|
|
Callbacks can be registered/unregistered in HAL_SPI_STATE_READY state only.
|
|
Exception done MspInit/MspDeInit functions that can be registered/unregistered
|
|
in HAL_SPI_STATE_READY or HAL_SPI_STATE_RESET state,
|
|
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
|
|
Then, the user first registers the MspInit/MspDeInit user callbacks
|
|
using HAL_SPI_RegisterCallback() before calling HAL_SPI_DeInit()
|
|
or HAL_SPI_Init() function.
|
|
|
|
When The compilation define USE_HAL_PPP_REGISTER_CALLBACKS is set to 0 or
|
|
not defined, the callback registering feature is not available
|
|
and weak (surcharged) callbacks are used.
|
|
|
|
|
|
[..]
|
|
Circular mode restriction:
|
|
(+) The DMA circular mode cannot be used when the SPI is configured in these modes:
|
|
(++) Master 2Lines RxOnly
|
|
(++) Master 1Line Rx
|
|
(+) The CRC feature is not managed when the DMA circular mode is enabled
|
|
(+) The functions HAL_SPI_DMAPause()/ HAL_SPI_DMAResume() are not supported. Return always
|
|
HAL_ERROR with ErrorCode set to HAL_SPI_ERROR_NOT_SUPPORTED.
|
|
Those functions are maintained for backward compatibility reasons.
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© Copyright (c) 2017 STMicroelectronics.
|
|
* All rights reserved.</center></h2>
|
|
*
|
|
* This software component is licensed by ST under BSD 3-Clause license,
|
|
* the "License"; You may not use this file except in compliance with the
|
|
* License. You may obtain a copy of the License at:
|
|
* opensource.org/licenses/BSD-3-Clause
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32h7xx_hal.h"
|
|
|
|
/** @addtogroup STM32H7xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup SPI SPI
|
|
* @brief SPI HAL module driver
|
|
* @{
|
|
*/
|
|
#ifdef HAL_SPI_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private defines -----------------------------------------------------------*/
|
|
/** @defgroup SPI_Private_Constants SPI Private Constants
|
|
* @{
|
|
*/
|
|
#define SPI_DEFAULT_TIMEOUT 100UL
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macros ------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @defgroup SPI_Private_Functions SPI Private Functions
|
|
* @{
|
|
*/
|
|
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
|
|
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
|
|
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma);
|
|
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma);
|
|
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma);
|
|
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma);
|
|
static void SPI_DMAError(DMA_HandleTypeDef *hdma);
|
|
static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma);
|
|
static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
|
|
static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
|
|
static HAL_StatusTypeDef SPI_WaitOnFlagUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus FlagStatus,
|
|
uint32_t Timeout, uint32_t Tickstart);
|
|
static void SPI_TxISR_8BIT(SPI_HandleTypeDef *hspi);
|
|
static void SPI_TxISR_16BIT(SPI_HandleTypeDef *hspi);
|
|
static void SPI_TxISR_32BIT(SPI_HandleTypeDef *hspi);
|
|
static void SPI_RxISR_8BIT(SPI_HandleTypeDef *hspi);
|
|
static void SPI_RxISR_16BIT(SPI_HandleTypeDef *hspi);
|
|
static void SPI_RxISR_32BIT(SPI_HandleTypeDef *hspi);
|
|
static void SPI_AbortTransfer(SPI_HandleTypeDef *hspi);
|
|
static void SPI_CloseTransfer(SPI_HandleTypeDef *hspi);
|
|
static uint32_t SPI_GetPacketSize(SPI_HandleTypeDef *hspi);
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Exported functions --------------------------------------------------------*/
|
|
/** @defgroup SPI_Exported_Functions SPI Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..] This subsection provides a set of functions allowing to initialize and
|
|
de-initialize the SPIx peripheral:
|
|
|
|
(+) User must implement HAL_SPI_MspInit() function in which he configures
|
|
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
|
|
|
|
(+) Call the function HAL_SPI_Init() to configure the selected device with
|
|
the selected configuration:
|
|
(++) Mode
|
|
(++) Direction
|
|
(++) Data Size
|
|
(++) Clock Polarity and Phase
|
|
(++) NSS Management
|
|
(++) BaudRate Prescaler
|
|
(++) FirstBit
|
|
(++) TIMode
|
|
(++) CRC Calculation
|
|
(++) CRC Polynomial if CRC enabled
|
|
(++) CRC Length, used only with Data8 and Data16
|
|
(++) FIFO reception threshold
|
|
(++) FIFO transmission threshold
|
|
|
|
(+) Call the function HAL_SPI_DeInit() to restore the default configuration
|
|
of the selected SPIx peripheral.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the SPI according to the specified parameters
|
|
* in the SPI_InitTypeDef and initialize the associated handle.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
|
|
{
|
|
uint32_t crc_length = 0UL;
|
|
uint32_t packet_length;
|
|
|
|
/* Check the SPI handle allocation */
|
|
if (hspi == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
|
|
assert_param(IS_SPI_MODE(hspi->Init.Mode));
|
|
assert_param(IS_SPI_DIRECTION(hspi->Init.Direction));
|
|
assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
|
|
assert_param(IS_SPI_FIFOTHRESHOLD(hspi->Init.FifoThreshold));
|
|
assert_param(IS_SPI_NSS(hspi->Init.NSS));
|
|
assert_param(IS_SPI_NSSP(hspi->Init.NSSPMode));
|
|
assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
|
|
assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
|
|
assert_param(IS_SPI_TIMODE(hspi->Init.TIMode));
|
|
if (hspi->Init.TIMode == SPI_TIMODE_DISABLE)
|
|
{
|
|
assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
|
|
assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
|
|
}
|
|
#if (USE_SPI_CRC != 0UL)
|
|
assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
|
|
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
|
{
|
|
assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));
|
|
assert_param(IS_SPI_CRC_LENGTH(hspi->Init.CRCLength));
|
|
assert_param(IS_SPI_CRC_INITIALIZATION_PATTERN(hspi->Init.TxCRCInitializationPattern));
|
|
assert_param(IS_SPI_CRC_INITIALIZATION_PATTERN(hspi->Init.RxCRCInitializationPattern));
|
|
}
|
|
#else
|
|
hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
|
|
#endif /* USE_SPI_CRC */
|
|
|
|
/* Verify that the SPI instance supports Data Size higher than 16bits */
|
|
if ((!IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (hspi->Init.DataSize > SPI_DATASIZE_16BIT))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Verify that the SPI instance supports requested data packing */
|
|
packet_length = SPI_GetPacketSize(hspi);
|
|
if (((!IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (packet_length > SPI_LOWEND_FIFO_SIZE)) ||
|
|
((IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (packet_length > SPI_HIGHEND_FIFO_SIZE)))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
#if (USE_SPI_CRC != 0UL)
|
|
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
|
{
|
|
/* Verify that the SPI instance supports CRC Length higher than 16bits */
|
|
if ((!IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (hspi->Init.CRCLength > SPI_CRC_LENGTH_16BIT))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Align the CRC Length on the data size */
|
|
if (hspi->Init.CRCLength == SPI_CRC_LENGTH_DATASIZE)
|
|
{
|
|
crc_length = (hspi->Init.DataSize >> SPI_CFG1_DSIZE_Pos) << SPI_CFG1_CRCSIZE_Pos;
|
|
}
|
|
else
|
|
{
|
|
crc_length = hspi->Init.CRCLength;
|
|
}
|
|
|
|
/* Verify that the CRC Length is higher than DataSize */
|
|
if ((hspi->Init.DataSize >> SPI_CFG1_DSIZE_Pos) > (crc_length >> SPI_CFG1_CRCSIZE_Pos))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
#endif /* USE_SPI_CRC */
|
|
|
|
if (hspi->State == HAL_SPI_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
hspi->Lock = HAL_UNLOCKED;
|
|
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
/* Init the SPI Callback settings */
|
|
hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */
|
|
hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */
|
|
hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */
|
|
hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
|
|
hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
|
|
hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */
|
|
hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */
|
|
hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
|
|
|
|
if (hspi->MspInitCallback == NULL)
|
|
{
|
|
hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */
|
|
}
|
|
|
|
/* Init the low level hardware : GPIO, CLOCK, NVIC... */
|
|
hspi->MspInitCallback(hspi);
|
|
#else
|
|
/* Init the low level hardware : GPIO, CLOCK, NVIC... */
|
|
HAL_SPI_MspInit(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
hspi->State = HAL_SPI_STATE_BUSY;
|
|
|
|
/* Disable the selected SPI peripheral */
|
|
__HAL_SPI_DISABLE(hspi);
|
|
|
|
/*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/
|
|
/* Configure : SPI Mode, Communication Mode, Clock polarity and phase, NSS management,
|
|
Communication speed, First bit, CRC calculation state, CRC Length */
|
|
|
|
if ((hspi->Init.NSS == SPI_NSS_SOFT) && (hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.NSSPolarity == SPI_NSS_POLARITY_LOW))
|
|
{
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_SSI);
|
|
}
|
|
|
|
/* SPIx CFG1 Configuration */
|
|
WRITE_REG(hspi->Instance->CFG1, (hspi->Init.BaudRatePrescaler | hspi->Init.CRCCalculation | crc_length |
|
|
hspi->Init.FifoThreshold | hspi->Init.DataSize));
|
|
|
|
/* SPIx CFG2 Configuration */
|
|
WRITE_REG(hspi->Instance->CFG2, (hspi->Init.NSSPMode | hspi->Init.TIMode | hspi->Init.NSSPolarity |
|
|
hspi->Init.NSS | hspi->Init.CLKPolarity | hspi->Init.CLKPhase |
|
|
hspi->Init.FirstBit | hspi->Init.Mode | hspi->Init.MasterInterDataIdleness |
|
|
hspi->Init.Direction | hspi->Init.MasterSSIdleness | hspi->Init.IOSwap));
|
|
|
|
#if (USE_SPI_CRC != 0UL)
|
|
/*---------------------------- SPIx CRCPOLY Configuration ------------------*/
|
|
/* Configure : CRC Polynomial */
|
|
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
|
{
|
|
/* Initialize TXCRC Pattern Initial Value */
|
|
if (hspi->Init.TxCRCInitializationPattern == SPI_CRC_INITIALIZATION_ALL_ONE_PATTERN)
|
|
{
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_TCRCINI);
|
|
}
|
|
else
|
|
{
|
|
CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_TCRCINI);
|
|
}
|
|
|
|
/* Initialize RXCRC Pattern Initial Value */
|
|
if (hspi->Init.RxCRCInitializationPattern == SPI_CRC_INITIALIZATION_ALL_ONE_PATTERN)
|
|
{
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_RCRCINI);
|
|
}
|
|
else
|
|
{
|
|
CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_RCRCINI);
|
|
}
|
|
|
|
/* Enable 33/17 bits CRC computation */
|
|
if (((!IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (crc_length == SPI_CRC_LENGTH_16BIT)) ||
|
|
((IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (crc_length == SPI_CRC_LENGTH_32BIT)))
|
|
{
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRC33_17);
|
|
}
|
|
else
|
|
{
|
|
CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_CRC33_17);
|
|
}
|
|
|
|
/* Write CRC polynomial in SPI Register */
|
|
WRITE_REG(hspi->Instance->CRCPOLY, hspi->Init.CRCPolynomial);
|
|
}
|
|
#endif /* USE_SPI_CRC */
|
|
|
|
/* Insure that Underrun configuration is managed only by Salve */
|
|
if (hspi->Init.Mode == SPI_MODE_SLAVE)
|
|
{
|
|
/* Set Default Underrun configuration */
|
|
#if (USE_SPI_CRC != 0UL)
|
|
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_DISABLE)
|
|
#endif
|
|
{
|
|
MODIFY_REG(hspi->Instance->CFG1, SPI_CFG1_UDRDET, SPI_CFG1_UDRDET_0);
|
|
}
|
|
MODIFY_REG(hspi->Instance->CFG1, SPI_CFG1_UDRCFG, SPI_CFG1_UDRCFG_1);
|
|
}
|
|
|
|
#if defined(SPI_I2SCFGR_I2SMOD)
|
|
/* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */
|
|
CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD);
|
|
#endif /* SPI_I2SCFGR_I2SMOD */
|
|
|
|
/* Insure that AFCNTR is managed only by Master */
|
|
if ((hspi->Init.Mode & SPI_MODE_MASTER) == SPI_MODE_MASTER)
|
|
{
|
|
/* Alternate function GPIOs control */
|
|
MODIFY_REG(hspi->Instance->CFG2, SPI_CFG2_AFCNTR, (hspi->Init.MasterKeepIOState));
|
|
}
|
|
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief De-Initialize the SPI peripheral.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Check the SPI handle allocation */
|
|
if (hspi == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check SPI Instance parameter */
|
|
assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
|
|
|
|
hspi->State = HAL_SPI_STATE_BUSY;
|
|
|
|
/* Disable the SPI Peripheral Clock */
|
|
__HAL_SPI_DISABLE(hspi);
|
|
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
if (hspi->MspDeInitCallback == NULL)
|
|
{
|
|
hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */
|
|
}
|
|
|
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
|
|
hspi->MspDeInitCallback(hspi);
|
|
#else
|
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
|
|
HAL_SPI_MspDeInit(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->State = HAL_SPI_STATE_RESET;
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the SPI MSP.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_SPI_MspInit should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief De-Initialize the SPI MSP.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_SPI_MspDeInit should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
/**
|
|
* @brief Register a User SPI Callback
|
|
* To be used instead of the weak predefined callback
|
|
* @param hspi Pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for the specified SPI.
|
|
* @param CallbackID ID of the callback to be registered
|
|
* @param pCallback pointer to the Callback function
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_RegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID, pSPI_CallbackTypeDef pCallback)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
if (pCallback == NULL)
|
|
{
|
|
/* Update the error code */
|
|
hspi->ErrorCode |= HAL_SPI_ERROR_INVALID_CALLBACK;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
/* Process locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
if (HAL_SPI_STATE_READY == hspi->State)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_SPI_TX_COMPLETE_CB_ID :
|
|
hspi->TxCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_SPI_RX_COMPLETE_CB_ID :
|
|
hspi->RxCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_SPI_TX_RX_COMPLETE_CB_ID :
|
|
hspi->TxRxCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_SPI_TX_HALF_COMPLETE_CB_ID :
|
|
hspi->TxHalfCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_SPI_RX_HALF_COMPLETE_CB_ID :
|
|
hspi->RxHalfCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID :
|
|
hspi->TxRxHalfCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_SPI_ERROR_CB_ID :
|
|
hspi->ErrorCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_SPI_ABORT_CB_ID :
|
|
hspi->AbortCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_SPI_MSPINIT_CB_ID :
|
|
hspi->MspInitCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_SPI_MSPDEINIT_CB_ID :
|
|
hspi->MspDeInitCallback = pCallback;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
|
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else if (HAL_SPI_STATE_RESET == hspi->State)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_SPI_MSPINIT_CB_ID :
|
|
hspi->MspInitCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_SPI_MSPDEINIT_CB_ID :
|
|
hspi->MspDeInitCallback = pCallback;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
|
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update the error code */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
|
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hspi);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Unregister an SPI Callback
|
|
* SPI callback is redirected to the weak predefined callback
|
|
* @param hspi Pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for the specified SPI.
|
|
* @param CallbackID ID of the callback to be unregistered
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_UnRegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
if (HAL_SPI_STATE_READY == hspi->State)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_SPI_TX_COMPLETE_CB_ID :
|
|
hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */
|
|
break;
|
|
|
|
case HAL_SPI_RX_COMPLETE_CB_ID :
|
|
hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */
|
|
break;
|
|
|
|
case HAL_SPI_TX_RX_COMPLETE_CB_ID :
|
|
hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */
|
|
break;
|
|
|
|
case HAL_SPI_TX_HALF_COMPLETE_CB_ID :
|
|
hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
|
|
break;
|
|
|
|
case HAL_SPI_RX_HALF_COMPLETE_CB_ID :
|
|
hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
|
|
break;
|
|
|
|
case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID :
|
|
hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */
|
|
break;
|
|
|
|
case HAL_SPI_ERROR_CB_ID :
|
|
hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */
|
|
break;
|
|
|
|
case HAL_SPI_ABORT_CB_ID :
|
|
hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
|
|
break;
|
|
|
|
case HAL_SPI_MSPINIT_CB_ID :
|
|
hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */
|
|
break;
|
|
|
|
case HAL_SPI_MSPDEINIT_CB_ID :
|
|
hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
|
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else if (HAL_SPI_STATE_RESET == hspi->State)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_SPI_MSPINIT_CB_ID :
|
|
hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */
|
|
break;
|
|
|
|
case HAL_SPI_MSPDEINIT_CB_ID :
|
|
hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
|
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update the error code */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
|
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hspi);
|
|
return status;
|
|
}
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup SPI_Exported_Functions_Group2 IO operation functions
|
|
* @brief Data transfers functions
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### IO operation functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to manage the SPI
|
|
data transfers.
|
|
|
|
[..] The SPI supports master and slave mode :
|
|
|
|
(#) There are two modes of transfer:
|
|
(##) Blocking mode: The communication is performed in polling mode.
|
|
The HAL status of all data processing is returned by the same function
|
|
after finishing transfer.
|
|
(##) No-Blocking mode: The communication is performed using Interrupts
|
|
or DMA, These APIs return the HAL status.
|
|
The end of the data processing will be indicated through the
|
|
dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when
|
|
using DMA mode.
|
|
The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks
|
|
will be executed respectively at the end of the transmit or Receive process
|
|
The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected
|
|
|
|
(#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA)
|
|
exist for 1Line (simplex) and 2Lines (full duplex) modes.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in blocking mode.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pData : pointer to data buffer
|
|
* @param Size : amount of data to be sent
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
|
|
/* Check Direction parameter */
|
|
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_TXONLY(hspi->Init.Direction));
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
/* Init tickstart for timeout management*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
if (hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
errorcode = HAL_BUSY;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if ((pData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Set the transaction information */
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pTxBuffPtr = (uint8_t *)pData;
|
|
hspi->TxXferSize = Size;
|
|
hspi->TxXferCount = Size;
|
|
|
|
/*Init field not used in handle to zero */
|
|
hspi->pRxBuffPtr = NULL;
|
|
hspi->RxXferSize = (uint16_t) 0UL;
|
|
hspi->RxXferCount = (uint16_t) 0UL;
|
|
hspi->TxISR = NULL;
|
|
hspi->RxISR = NULL;
|
|
|
|
/* Configure communication direction : 1Line */
|
|
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
SPI_1LINE_TX(hspi);
|
|
}
|
|
|
|
/* Set the number of data at current transfer */
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size);
|
|
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
|
|
if (hspi->Init.Mode == SPI_MODE_MASTER)
|
|
{
|
|
/* Master transfer start */
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART);
|
|
}
|
|
|
|
/* Transmit data in 32 Bit mode */
|
|
if (hspi->Init.DataSize > SPI_DATASIZE_16BIT)
|
|
{
|
|
/* Transmit data in 32 Bit mode */
|
|
while (hspi->TxXferCount > 0UL)
|
|
{
|
|
/* Wait until TXP flag is set to send data */
|
|
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP))
|
|
{
|
|
*((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint32_t);
|
|
hspi->TxXferCount--;
|
|
}
|
|
else
|
|
{
|
|
/* Timeout management */
|
|
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
|
{
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Transmit data in 16 Bit mode */
|
|
else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
/* Transmit data in 16 Bit mode */
|
|
while (hspi->TxXferCount > 0UL)
|
|
{
|
|
/* Wait until TXP flag is set to send data */
|
|
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP))
|
|
{
|
|
if ((hspi->TxXferCount > 1UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_01DATA))
|
|
{
|
|
*((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint32_t);
|
|
hspi->TxXferCount -= (uint16_t)2UL;
|
|
}
|
|
else
|
|
{
|
|
*((__IO uint16_t *)&hspi->Instance->TXDR) = *((uint16_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount--;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Timeout management */
|
|
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
|
{
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Transmit data in 8 Bit mode */
|
|
else
|
|
{
|
|
while (hspi->TxXferCount > 0UL)
|
|
{
|
|
/* Wait until TXP flag is set to send data */
|
|
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP))
|
|
{
|
|
if ((hspi->TxXferCount > 3UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_03DATA))
|
|
{
|
|
*((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint32_t);
|
|
hspi->TxXferCount -= (uint16_t)4UL;
|
|
}
|
|
else if ((hspi->TxXferCount > 1UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_01DATA))
|
|
{
|
|
*((__IO uint16_t *)&hspi->Instance->TXDR) = *((uint16_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount -= (uint16_t)2UL;
|
|
}
|
|
else
|
|
{
|
|
*((__IO uint8_t *)&hspi->Instance->TXDR) = *((uint8_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint8_t);
|
|
hspi->TxXferCount--;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Timeout management */
|
|
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
|
{
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Wait for Tx (and CRC) data to be sent */
|
|
if (SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_EOT, RESET, tickstart, Timeout) != HAL_OK)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
|
}
|
|
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
return errorcode;
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in blocking mode.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pData : pointer to data buffer
|
|
* @param Size : amount of data to be received
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
|
|
/* Check Direction parameter */
|
|
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_RXONLY(hspi->Init.Direction));
|
|
|
|
if ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
|
|
{
|
|
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
|
/* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
|
|
return HAL_SPI_TransmitReceive(hspi, pData, pData, Size, Timeout);
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
/* Init tickstart for timeout management*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
if (hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
errorcode = HAL_BUSY;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if ((pData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Set the transaction information */
|
|
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pRxBuffPtr = (uint8_t *)pData;
|
|
hspi->RxXferSize = Size;
|
|
hspi->RxXferCount = Size;
|
|
|
|
/*Init field not used in handle to zero */
|
|
hspi->pTxBuffPtr = NULL;
|
|
hspi->TxXferSize = (uint16_t) 0UL;
|
|
hspi->TxXferCount = (uint16_t) 0UL;
|
|
hspi->RxISR = NULL;
|
|
hspi->TxISR = NULL;
|
|
|
|
/* Configure communication direction: 1Line */
|
|
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
SPI_1LINE_RX(hspi);
|
|
}
|
|
|
|
/* Set the number of data at current transfer */
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size);
|
|
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
|
|
if (hspi->Init.Mode == SPI_MODE_MASTER)
|
|
{
|
|
/* Master transfer start */
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART);
|
|
}
|
|
|
|
/* Receive data in 32 Bit mode */
|
|
if (hspi->Init.DataSize > SPI_DATASIZE_16BIT)
|
|
{
|
|
/* Transfer loop */
|
|
while (hspi->RxXferCount > 0UL)
|
|
{
|
|
/* Check the RXWNE/EOT flag */
|
|
if ((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_EOT)) != 0UL)
|
|
{
|
|
*((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint32_t);
|
|
hspi->RxXferCount--;
|
|
}
|
|
else
|
|
{
|
|
/* Timeout management */
|
|
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
|
{
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Receive data in 16 Bit mode */
|
|
else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
/* Transfer loop */
|
|
while (hspi->RxXferCount > 0UL)
|
|
{
|
|
/* Check the RXWNE/FRLVL flag */
|
|
if ((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_FRLVL)) != 0UL)
|
|
{
|
|
if ((hspi->Instance->SR & SPI_FLAG_RXWNE) != 0UL)
|
|
{
|
|
*((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint32_t);
|
|
hspi->RxXferCount -= (uint16_t)2UL;
|
|
}
|
|
else
|
|
{
|
|
*((uint16_t *)hspi->pRxBuffPtr) = *((__IO uint16_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount--;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Timeout management */
|
|
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
|
{
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Receive data in 8 Bit mode */
|
|
else
|
|
{
|
|
/* Transfer loop */
|
|
while (hspi->RxXferCount > 0UL)
|
|
{
|
|
/* Check the RXWNE/FRLVL flag */
|
|
if ((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_FRLVL)) != 0UL)
|
|
{
|
|
if ((hspi->Instance->SR & SPI_FLAG_RXWNE) != 0UL)
|
|
{
|
|
*((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint32_t);
|
|
hspi->RxXferCount -= (uint16_t)4UL;
|
|
}
|
|
else if ((hspi->Instance->SR & SPI_FLAG_FRLVL) > SPI_RX_FIFO_1PACKET)
|
|
{
|
|
*((uint16_t *)hspi->pRxBuffPtr) = *((__IO uint16_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount -= (uint16_t)2UL;
|
|
}
|
|
else
|
|
{
|
|
*((uint8_t *)hspi->pRxBuffPtr) = *((__IO uint8_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint8_t);
|
|
hspi->RxXferCount--;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Timeout management */
|
|
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
|
{
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if (USE_SPI_CRC != 0UL)
|
|
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
|
{
|
|
/* Wait for crc data to be received */
|
|
if (SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_EOT, RESET, tickstart, Timeout) != HAL_OK)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
|
}
|
|
}
|
|
#endif /* USE_SPI_CRC */
|
|
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
return errorcode;
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit and Receive an amount of data in blocking mode.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pTxData: pointer to transmission data buffer
|
|
* @param pRxData: pointer to reception data buffer
|
|
* @param Size : amount of data to be sent and received
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size,
|
|
uint32_t Timeout)
|
|
{
|
|
HAL_SPI_StateTypeDef tmp_state;
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
|
|
uint32_t tickstart;
|
|
uint32_t tmp_mode;
|
|
uint16_t initial_TxXferCount;
|
|
uint16_t initial_RxXferCount;
|
|
|
|
/* Check Direction parameter */
|
|
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
/* Init tickstart for timeout management*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
initial_TxXferCount = Size;
|
|
initial_RxXferCount = Size;
|
|
tmp_state = hspi->State;
|
|
tmp_mode = hspi->Init.Mode;
|
|
|
|
if (!((tmp_state == HAL_SPI_STATE_READY) || \
|
|
((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX))))
|
|
{
|
|
errorcode = HAL_BUSY;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
|
|
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
|
|
}
|
|
|
|
/* Set the transaction information */
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pRxBuffPtr = (uint8_t *)pRxData;
|
|
hspi->RxXferCount = Size;
|
|
hspi->RxXferSize = Size;
|
|
hspi->pTxBuffPtr = (uint8_t *)pTxData;
|
|
hspi->TxXferCount = Size;
|
|
hspi->TxXferSize = Size;
|
|
|
|
/*Init field not used in handle to zero */
|
|
hspi->RxISR = NULL;
|
|
hspi->TxISR = NULL;
|
|
|
|
/* Set the number of data at current transfer */
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size);
|
|
|
|
__HAL_SPI_ENABLE(hspi);
|
|
|
|
if (hspi->Init.Mode == SPI_MODE_MASTER)
|
|
{
|
|
/* Master transfer start */
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART);
|
|
}
|
|
|
|
/* Transmit and Receive data in 32 Bit mode */
|
|
if (hspi->Init.DataSize > SPI_DATASIZE_16BIT)
|
|
{
|
|
while ((initial_TxXferCount > 0UL) || (initial_RxXferCount > 0UL))
|
|
{
|
|
/* Check TXP flag */
|
|
if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP)) && (initial_TxXferCount > 0UL))
|
|
{
|
|
*((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint32_t);
|
|
hspi->TxXferCount --;
|
|
initial_TxXferCount = hspi->TxXferCount;
|
|
}
|
|
|
|
/* Check RXWNE/EOT flag */
|
|
if (((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_EOT)) != 0UL) && (initial_RxXferCount > 0UL))
|
|
{
|
|
*((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint32_t);
|
|
hspi->RxXferCount --;
|
|
initial_RxXferCount = hspi->RxXferCount;
|
|
}
|
|
}
|
|
|
|
/* Timeout management */
|
|
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
|
{
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* Transmit and Receive data in 16 Bit mode */
|
|
else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
while ((initial_TxXferCount > 0UL) || (initial_RxXferCount > 0UL))
|
|
{
|
|
/* Check TXP flag */
|
|
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP) && (initial_TxXferCount > 0UL))
|
|
{
|
|
if ((initial_TxXferCount > 1UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_01DATA))
|
|
{
|
|
*((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint32_t);
|
|
hspi->TxXferCount -= (uint16_t)2UL;
|
|
initial_TxXferCount = hspi->TxXferCount;
|
|
}
|
|
else
|
|
{
|
|
*((__IO uint16_t *)&hspi->Instance->TXDR) = *((uint16_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount--;
|
|
initial_TxXferCount = hspi->TxXferCount;
|
|
}
|
|
}
|
|
|
|
/* Check RXWNE/FRLVL flag */
|
|
if (((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_FRLVL)) != 0UL) && (initial_RxXferCount > 0UL))
|
|
{
|
|
if ((hspi->Instance->SR & SPI_FLAG_RXWNE) != 0UL)
|
|
{
|
|
*((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint32_t);
|
|
hspi->RxXferCount -= (uint16_t)2UL;
|
|
initial_RxXferCount = hspi->RxXferCount;
|
|
}
|
|
else
|
|
{
|
|
*((uint16_t *)hspi->pRxBuffPtr) = *((__IO uint16_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount--;
|
|
initial_RxXferCount = hspi->RxXferCount;
|
|
}
|
|
}
|
|
|
|
/* Timeout management */
|
|
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
|
{
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
/* Transmit and Receive data in 8 Bit mode */
|
|
else
|
|
{
|
|
while ((initial_TxXferCount > 0UL) || (initial_RxXferCount > 0UL))
|
|
{
|
|
/* check TXP flag */
|
|
if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP)) && (initial_TxXferCount > 0UL))
|
|
{
|
|
if ((initial_TxXferCount > 3UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_03DATA))
|
|
{
|
|
*((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint32_t);
|
|
hspi->TxXferCount -= (uint16_t)4UL;
|
|
initial_TxXferCount = hspi->TxXferCount;
|
|
}
|
|
else if ((initial_TxXferCount > 1UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_01DATA))
|
|
{
|
|
*((__IO uint16_t *)&hspi->Instance->TXDR) = *((uint16_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount -= (uint16_t)2UL;
|
|
initial_TxXferCount = hspi->TxXferCount;
|
|
}
|
|
else
|
|
{
|
|
*((__IO uint8_t *)&hspi->Instance->TXDR) = *((uint8_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint8_t);
|
|
hspi->TxXferCount--;
|
|
initial_TxXferCount = hspi->TxXferCount;
|
|
}
|
|
}
|
|
|
|
/* Wait until RXWNE/FRLVL flag is reset */
|
|
if (((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_FRLVL)) != 0UL) && (initial_RxXferCount > 0UL))
|
|
{
|
|
if ((hspi->Instance->SR & SPI_FLAG_RXWNE) != 0UL)
|
|
{
|
|
*((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint32_t);
|
|
hspi->RxXferCount -= (uint16_t)4UL;
|
|
initial_RxXferCount = hspi->RxXferCount;
|
|
}
|
|
else if ((hspi->Instance->SR & SPI_FLAG_FRLVL) > SPI_RX_FIFO_1PACKET)
|
|
{
|
|
*((uint16_t *)hspi->pRxBuffPtr) = *((__IO uint16_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount -= (uint16_t)2UL;
|
|
initial_RxXferCount = hspi->RxXferCount;
|
|
}
|
|
else
|
|
{
|
|
*((uint8_t *)hspi->pRxBuffPtr) = *((__IO uint8_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint8_t);
|
|
hspi->RxXferCount--;
|
|
initial_RxXferCount = hspi->RxXferCount;
|
|
}
|
|
}
|
|
|
|
/* Timeout management */
|
|
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
|
{
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Wait for Tx/Rx (and CRC) data to be sent/received */
|
|
if (SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_EOT, RESET, tickstart, Timeout) != HAL_OK)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
|
}
|
|
|
|
/* Call standard close procedure with error check */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
return errorcode;
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in non-blocking mode with Interrupt.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pData: pointer to data buffer
|
|
* @param Size : amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
|
{
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
|
|
/* Check Direction parameter */
|
|
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_TXONLY(hspi->Init.Direction));
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
if ((pData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if (hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
errorcode = HAL_BUSY;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Set the transaction information */
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pTxBuffPtr = (uint8_t *)pData;
|
|
hspi->TxXferSize = Size;
|
|
hspi->TxXferCount = Size;
|
|
|
|
/* Init field not used in handle to zero */
|
|
hspi->pRxBuffPtr = NULL;
|
|
hspi->RxXferSize = (uint16_t) 0UL;
|
|
hspi->RxXferCount = (uint16_t) 0UL;
|
|
hspi->RxISR = NULL;
|
|
|
|
/* Set the function for IT treatment */
|
|
if (hspi->Init.DataSize > SPI_DATASIZE_16BIT)
|
|
{
|
|
hspi->TxISR = SPI_TxISR_32BIT;
|
|
}
|
|
else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
hspi->TxISR = SPI_TxISR_16BIT;
|
|
}
|
|
else
|
|
{
|
|
hspi->TxISR = SPI_TxISR_8BIT;
|
|
}
|
|
|
|
/* Configure communication direction : 1Line */
|
|
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
SPI_1LINE_TX(hspi);
|
|
}
|
|
|
|
/* Set the number of data at current transfer */
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size);
|
|
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
|
|
/* Enable EOT, TXP, FRE, MODF, UDR and TSERF interrupts */
|
|
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_EOT | SPI_IT_TXP | SPI_IT_UDR | SPI_IT_FRE | SPI_IT_MODF | SPI_IT_TSERF));
|
|
|
|
if (hspi->Init.Mode == SPI_MODE_MASTER)
|
|
{
|
|
/* Master transfer start */
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART);
|
|
}
|
|
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in non-blocking mode with Interrupt.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pData: pointer to data buffer
|
|
* @param Size : amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
|
{
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
|
|
/* Check Direction parameter */
|
|
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_RXONLY(hspi->Init.Direction));
|
|
|
|
if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
|
|
{
|
|
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
|
/* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
|
|
return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size);
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
if (hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
errorcode = HAL_BUSY;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if ((pData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Set the transaction information */
|
|
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pRxBuffPtr = (uint8_t *)pData;
|
|
hspi->RxXferSize = Size;
|
|
hspi->RxXferCount = Size;
|
|
|
|
/* Init field not used in handle to zero */
|
|
hspi->pTxBuffPtr = NULL;
|
|
hspi->TxXferSize = (uint16_t) 0UL;
|
|
hspi->TxXferCount = (uint16_t) 0UL;
|
|
hspi->TxISR = NULL;
|
|
|
|
/* Set the function for IT treatment */
|
|
if (hspi->Init.DataSize > SPI_DATASIZE_16BIT)
|
|
{
|
|
hspi->RxISR = SPI_RxISR_32BIT;
|
|
}
|
|
else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
hspi->RxISR = SPI_RxISR_16BIT;
|
|
}
|
|
else
|
|
{
|
|
hspi->RxISR = SPI_RxISR_8BIT;
|
|
}
|
|
|
|
/* Configure communication direction : 1Line */
|
|
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
SPI_1LINE_RX(hspi);
|
|
}
|
|
|
|
/* Note : The SPI must be enabled after unlocking current process
|
|
to avoid the risk of SPI interrupt handle execution before current
|
|
process unlock */
|
|
|
|
/* Set the number of data at current transfer */
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size);
|
|
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
|
|
/* Enable EOT, RXP, OVR, FRE, MODF and TSERF interrupts */
|
|
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_EOT | SPI_IT_RXP | SPI_IT_OVR | SPI_IT_FRE | SPI_IT_MODF | SPI_IT_TSERF));
|
|
|
|
if (hspi->Init.Mode == SPI_MODE_MASTER)
|
|
{
|
|
/* Master transfer start */
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART);
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit and Receive an amount of data in non-blocking mode with Interrupt.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pTxData: pointer to transmission data buffer
|
|
* @param pRxData: pointer to reception data buffer
|
|
* @param Size : amount of data to be sent and received
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
|
|
{
|
|
HAL_SPI_StateTypeDef tmp_state;
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
|
|
uint32_t tmp_mode;
|
|
|
|
/* Check Direction parameter */
|
|
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
/* Init temporary variables */
|
|
tmp_state = hspi->State;
|
|
tmp_mode = hspi->Init.Mode;
|
|
|
|
if (!((tmp_state == HAL_SPI_STATE_READY) || \
|
|
((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX))))
|
|
{
|
|
errorcode = HAL_BUSY;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
|
|
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
|
|
}
|
|
|
|
/* Set the transaction information */
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pTxBuffPtr = (uint8_t *)pTxData;
|
|
hspi->TxXferSize = Size;
|
|
hspi->TxXferCount = Size;
|
|
hspi->pRxBuffPtr = (uint8_t *)pRxData;
|
|
hspi->RxXferSize = Size;
|
|
hspi->RxXferCount = Size;
|
|
|
|
/* Set the function for IT treatment */
|
|
if (hspi->Init.DataSize > SPI_DATASIZE_16BIT)
|
|
{
|
|
hspi->TxISR = SPI_TxISR_32BIT;
|
|
hspi->RxISR = SPI_RxISR_32BIT;
|
|
}
|
|
else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
hspi->RxISR = SPI_RxISR_16BIT;
|
|
hspi->TxISR = SPI_TxISR_16BIT;
|
|
}
|
|
else
|
|
{
|
|
hspi->RxISR = SPI_RxISR_8BIT;
|
|
hspi->TxISR = SPI_TxISR_8BIT;
|
|
}
|
|
|
|
/* Set the number of data at current transfer */
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size);
|
|
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
|
|
/* Enable EOT, RXP, TXP, DXP, UDR, OVR, FRE, MODF and TSERF interrupts */
|
|
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_EOT | SPI_IT_RXP | SPI_IT_TXP | SPI_IT_DXP | SPI_IT_UDR | SPI_IT_OVR | SPI_IT_FRE | SPI_IT_MODF | SPI_IT_TSERF));
|
|
|
|
if (hspi->Init.Mode == SPI_MODE_MASTER)
|
|
{
|
|
/* Master transfer start */
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART);
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
#if defined(USE_SPI_RELOAD_TRANSFER)
|
|
/**
|
|
* @brief Transmit an additional amount of data in blocking mode.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pData: pointer to data buffer
|
|
* @param Size : amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Reload_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
|
{
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
HAL_SPI_StateTypeDef tmp_state;
|
|
|
|
/* Lock the process */
|
|
__HAL_LOCK(hspi);
|
|
|
|
if ((pData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if (hspi->State == HAL_SPI_STATE_BUSY_TX)
|
|
{
|
|
/* check if there is already a request to reload */
|
|
if (hspi->Reload.Requested == 1UL)
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Insert the new number of data to be sent just after the current one */
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, (Size & 0xFFFFFFFFUL) << 16UL);
|
|
|
|
/* Set the transaction information */
|
|
hspi->Reload.Requested = 1UL;
|
|
hspi->Reload.pTxBuffPtr = (uint8_t *)pData;
|
|
hspi->Reload.TxXferSize = Size;
|
|
|
|
tmp_state = hspi->State;
|
|
|
|
/* Check if the current transmit is already completed */
|
|
if (((hspi->Instance->CR2 & SPI_CR2_TSER) != 0UL) && (tmp_state == HAL_SPI_STATE_READY))
|
|
{
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TSERF);
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, 0UL);
|
|
hspi->Reload.Requested = 0UL;
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
return errorcode;
|
|
}
|
|
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
#endif /* USE_HSPI_RELOAD_TRANSFER */
|
|
|
|
#if defined(USE_SPI_RELOAD_TRANSFER)
|
|
/**
|
|
* @brief Receive an additional amount of data in blocking mode.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pData: pointer to data buffer
|
|
* @param Size : amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Reload_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
|
{
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
HAL_SPI_StateTypeDef tmp_state;
|
|
|
|
/* Lock the process */
|
|
__HAL_LOCK(hspi);
|
|
|
|
if ((pData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if (hspi->State == HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
/* check if there is already a request to reload */
|
|
if (hspi->Reload.Requested == 1UL)
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Insert the new number of data that will be received just after the current one */
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, (Size & 0xFFFFFFFFUL) << 16UL);
|
|
|
|
/* Set the transaction information */
|
|
hspi->Reload.Requested = 1UL;
|
|
hspi->Reload.pRxBuffPtr = (uint8_t *)pData;
|
|
hspi->Reload.RxXferSize = Size;
|
|
|
|
tmp_state = hspi->State;
|
|
|
|
/* Check if the current reception is already completed */
|
|
if (((hspi->Instance->CR2 & SPI_CR2_TSER) != 0UL) && (tmp_state == HAL_SPI_STATE_READY))
|
|
{
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TSERF);
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, 0UL);
|
|
hspi->Reload.Requested = 0UL;
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
return errorcode;
|
|
}
|
|
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
#endif /* USE_HSPI_RELOAD_TRANSFER */
|
|
|
|
#if defined(USE_SPI_RELOAD_TRANSFER)
|
|
/**
|
|
* @brief Transmit and receive an additional amount of data in blocking mode.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pTxData: pointer to transmission data buffer
|
|
* @param pRxData: pointer to reception data buffer
|
|
* @param Size : amount of data to be sent and received
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Reload_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
|
|
{
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
HAL_SPI_StateTypeDef tmp_state;
|
|
|
|
/* Lock the process */
|
|
__HAL_LOCK(hspi);
|
|
|
|
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if (hspi->State == HAL_SPI_STATE_BUSY_TX_RX)
|
|
{
|
|
/* check if there is already a request to reload */
|
|
if (hspi->Reload.Requested == 1UL)
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Insert the new number of data that will be sent and received just after the current one */
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, (Size & 0xFFFFFFFFUL) << 16UL);
|
|
|
|
/* Set the transaction information */
|
|
hspi->Reload.Requested = 1UL;
|
|
hspi->Reload.pTxBuffPtr = (uint8_t *)pTxData;
|
|
hspi->Reload.TxXferSize = Size;
|
|
hspi->Reload.pRxBuffPtr = (uint8_t *)pRxData;
|
|
hspi->Reload.RxXferSize = Size;
|
|
|
|
tmp_state = hspi->State;
|
|
|
|
/* Check if the current transmit is already completed */
|
|
if (((hspi->Instance->CR2 & SPI_CR2_TSER) != 0UL) && (tmp_state == HAL_SPI_STATE_READY))
|
|
{
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TSERF);
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, 0UL);
|
|
hspi->Reload.Requested = 0UL;
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
return errorcode;
|
|
}
|
|
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
#endif /* USE_HSPI_RELOAD_TRANSFER */
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in non-blocking mode with DMA.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pData: pointer to data buffer
|
|
* @param Size : amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
|
{
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
|
|
/* Check Direction parameter */
|
|
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_TXONLY(hspi->Init.Direction));
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
if (hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
errorcode = HAL_BUSY;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if ((pData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Set the transaction information */
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pTxBuffPtr = (uint8_t *)pData;
|
|
hspi->TxXferSize = Size;
|
|
hspi->TxXferCount = Size;
|
|
|
|
/* Init field not used in handle to zero */
|
|
hspi->pRxBuffPtr = NULL;
|
|
hspi->TxISR = NULL;
|
|
hspi->RxISR = NULL;
|
|
hspi->RxXferSize = (uint16_t)0UL;
|
|
hspi->RxXferCount = (uint16_t)0UL;
|
|
|
|
/* Configure communication direction : 1Line */
|
|
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
SPI_1LINE_TX(hspi);
|
|
}
|
|
|
|
/* Packing mode management is enabled by the DMA settings */
|
|
if (((hspi->Init.DataSize > SPI_DATASIZE_16BIT) && (hspi->hdmatx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD)) || \
|
|
((hspi->Init.DataSize > SPI_DATASIZE_8BIT) && ((hspi->hdmatx->Init.MemDataAlignment != DMA_MDATAALIGN_HALFWORD) && \
|
|
(hspi->hdmatx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD))))
|
|
{
|
|
/* Restriction the DMA data received is not allowed in this mode */
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Adjust XferCount according to DMA alignment / Data size */
|
|
if (hspi->Init.DataSize <= SPI_DATASIZE_8BIT)
|
|
{
|
|
if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
|
|
{
|
|
hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 1UL) >> 1UL;
|
|
}
|
|
if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD)
|
|
{
|
|
hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 3UL) >> 2UL;
|
|
}
|
|
}
|
|
else if (hspi->Init.DataSize <= SPI_DATASIZE_16BIT)
|
|
{
|
|
if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD)
|
|
{
|
|
hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 1UL) >> 1UL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Adjustment done */
|
|
}
|
|
|
|
/* Set the SPI TxDMA Half transfer complete callback */
|
|
hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt;
|
|
|
|
/* Set the SPI TxDMA transfer complete callback */
|
|
hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hspi->hdmatx->XferErrorCallback = SPI_DMAError;
|
|
|
|
/* Set the DMA AbortCpltCallback */
|
|
hspi->hdmatx->XferAbortCallback = NULL;
|
|
|
|
/* Clear TXDMAEN bit*/
|
|
CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN);
|
|
|
|
/* Enable the Tx DMA Stream/Channel */
|
|
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->TXDR, hspi->TxXferCount))
|
|
{
|
|
/* Update SPI error code */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
|
errorcode = HAL_ERROR;
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return errorcode;
|
|
}
|
|
|
|
/* Set the number of data at current transfer */
|
|
if (hspi->hdmatx->Init.Mode == DMA_CIRCULAR)
|
|
{
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, 0UL);
|
|
}
|
|
else
|
|
{
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size);
|
|
}
|
|
|
|
/* Enable Tx DMA Request */
|
|
SET_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN);
|
|
|
|
/* Enable the SPI Error Interrupt Bit */
|
|
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_UDR | SPI_IT_FRE | SPI_IT_MODF));
|
|
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
|
|
if (hspi->Init.Mode == SPI_MODE_MASTER)
|
|
{
|
|
/* Master transfer start */
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART);
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in non-blocking mode with DMA.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pData: pointer to data buffer
|
|
* @param Size : amount of data to be sent
|
|
* @note When the CRC feature is enabled the pData Length must be Size + 1.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
|
{
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
|
|
/* Check Direction parameter */
|
|
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_RXONLY(hspi->Init.Direction));
|
|
|
|
if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
|
|
{
|
|
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
|
/* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
|
|
return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size);
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
if (hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
errorcode = HAL_BUSY;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if ((pData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Set the transaction information */
|
|
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pRxBuffPtr = (uint8_t *)pData;
|
|
hspi->RxXferSize = Size;
|
|
hspi->RxXferCount = Size;
|
|
|
|
/*Init field not used in handle to zero */
|
|
hspi->RxISR = NULL;
|
|
hspi->TxISR = NULL;
|
|
hspi->TxXferSize = (uint16_t) 0UL;
|
|
hspi->TxXferCount = (uint16_t) 0UL;
|
|
|
|
/* Configure communication direction : 1Line */
|
|
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
SPI_1LINE_RX(hspi);
|
|
}
|
|
|
|
/* Packing mode management is enabled by the DMA settings */
|
|
if (((hspi->Init.DataSize > SPI_DATASIZE_16BIT) && (hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD)) || \
|
|
((hspi->Init.DataSize > SPI_DATASIZE_8BIT) && ((hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_HALFWORD) && \
|
|
(hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD))))
|
|
{
|
|
/* Restriction the DMA data received is not allowed in this mode */
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Clear RXDMAEN bit */
|
|
CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_RXDMAEN);
|
|
|
|
/* Adjust XferCount according to DMA alignment / Data size */
|
|
if (hspi->Init.DataSize <= SPI_DATASIZE_8BIT)
|
|
{
|
|
if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
|
|
{
|
|
hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 1UL) >> 1UL;
|
|
}
|
|
if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD)
|
|
{
|
|
hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 3UL) >> 2UL;
|
|
}
|
|
}
|
|
else if (hspi->Init.DataSize <= SPI_DATASIZE_16BIT)
|
|
{
|
|
if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD)
|
|
{
|
|
hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 1UL) >> 1UL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Adjustment done */
|
|
}
|
|
|
|
/* Set the SPI RxDMA Half transfer complete callback */
|
|
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
|
|
|
|
/* Set the SPI Rx DMA transfer complete callback */
|
|
hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hspi->hdmarx->XferErrorCallback = SPI_DMAError;
|
|
|
|
/* Set the DMA AbortCpltCallback */
|
|
hspi->hdmarx->XferAbortCallback = NULL;
|
|
|
|
/* Enable the Rx DMA Stream/Channel */
|
|
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->RXDR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount))
|
|
{
|
|
/* Update SPI error code */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
|
errorcode = HAL_ERROR;
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return errorcode;
|
|
}
|
|
|
|
/* Set the number of data at current transfer */
|
|
if (hspi->hdmarx->Init.Mode == DMA_CIRCULAR)
|
|
{
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, 0UL);
|
|
}
|
|
else
|
|
{
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size);
|
|
}
|
|
|
|
/* Enable Rx DMA Request */
|
|
SET_BIT(hspi->Instance->CFG1, SPI_CFG1_RXDMAEN);
|
|
|
|
/* Enable the SPI Error Interrupt Bit */
|
|
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_OVR | SPI_IT_FRE | SPI_IT_MODF));
|
|
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
|
|
if (hspi->Init.Mode == SPI_MODE_MASTER)
|
|
{
|
|
/* Master transfer start */
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART);
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit and Receive an amount of data in non-blocking mode with DMA.
|
|
* @param hspi : pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param pTxData: pointer to transmission data buffer
|
|
* @param pRxData: pointer to reception data buffer
|
|
* @param Size : amount of data to be sent
|
|
* @note When the CRC feature is enabled the pRxData Length must be Size + 1
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData,
|
|
uint16_t Size)
|
|
{
|
|
HAL_SPI_StateTypeDef tmp_state;
|
|
HAL_StatusTypeDef errorcode = HAL_OK;
|
|
|
|
uint32_t tmp_mode;
|
|
|
|
/* Check Direction parameter */
|
|
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
/* Init temporary variables */
|
|
tmp_state = hspi->State;
|
|
tmp_mode = hspi->Init.Mode;
|
|
|
|
if (!(((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)) || (tmp_state == HAL_SPI_STATE_READY)))
|
|
{
|
|
errorcode = HAL_BUSY;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0UL))
|
|
{
|
|
errorcode = HAL_ERROR;
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
|
|
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
|
|
}
|
|
|
|
/* Set the transaction information */
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pTxBuffPtr = (uint8_t *)pTxData;
|
|
hspi->TxXferSize = Size;
|
|
hspi->TxXferCount = Size;
|
|
hspi->pRxBuffPtr = (uint8_t *)pRxData;
|
|
hspi->RxXferSize = Size;
|
|
hspi->RxXferCount = Size;
|
|
|
|
/* Init field not used in handle to zero */
|
|
hspi->RxISR = NULL;
|
|
hspi->TxISR = NULL;
|
|
|
|
/* Reset the Tx/Rx DMA bits */
|
|
CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN);
|
|
|
|
/* Packing mode management is enabled by the DMA settings */
|
|
if (((hspi->Init.DataSize > SPI_DATASIZE_16BIT) && (hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD)) || \
|
|
((hspi->Init.DataSize > SPI_DATASIZE_8BIT) && ((hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_HALFWORD) && \
|
|
(hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD))))
|
|
{
|
|
/* Restriction the DMA data received is not allowed in this mode */
|
|
errorcode = HAL_ERROR;
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/* Adjust XferCount according to DMA alignment / Data size */
|
|
if (hspi->Init.DataSize <= SPI_DATASIZE_8BIT)
|
|
{
|
|
if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
|
|
{
|
|
hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 1UL) >> 1UL;
|
|
}
|
|
if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD)
|
|
{
|
|
hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 3UL) >> 2UL;
|
|
}
|
|
if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
|
|
{
|
|
hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 1UL) >> 1UL;
|
|
}
|
|
if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD)
|
|
{
|
|
hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 3UL) >> 2UL;
|
|
}
|
|
}
|
|
else if (hspi->Init.DataSize <= SPI_DATASIZE_16BIT)
|
|
{
|
|
if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD)
|
|
{
|
|
hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 1UL) >> 1UL;
|
|
}
|
|
if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD)
|
|
{
|
|
hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 1UL) >> 1UL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Adjustment done */
|
|
}
|
|
|
|
/* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */
|
|
if (hspi->State == HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
/* Set the SPI Rx DMA Half transfer complete callback */
|
|
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
|
|
hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
|
|
}
|
|
else
|
|
{
|
|
/* Set the SPI Tx/Rx DMA Half transfer complete callback */
|
|
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt;
|
|
hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt;
|
|
}
|
|
|
|
/* Set the DMA error callback */
|
|
hspi->hdmarx->XferErrorCallback = SPI_DMAError;
|
|
|
|
/* Set the DMA AbortCallback */
|
|
hspi->hdmarx->XferAbortCallback = NULL;
|
|
|
|
/* Enable the Rx DMA Stream/Channel */
|
|
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->RXDR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount))
|
|
{
|
|
/* Update SPI error code */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
|
errorcode = HAL_ERROR;
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return errorcode;
|
|
}
|
|
|
|
/* Enable Rx DMA Request */
|
|
SET_BIT(hspi->Instance->CFG1, SPI_CFG1_RXDMAEN);
|
|
|
|
/* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing
|
|
is performed in DMA reception complete callback */
|
|
hspi->hdmatx->XferHalfCpltCallback = NULL;
|
|
hspi->hdmatx->XferCpltCallback = NULL;
|
|
hspi->hdmatx->XferErrorCallback = NULL;
|
|
hspi->hdmatx->XferAbortCallback = NULL;
|
|
|
|
/* Enable the Tx DMA Stream/Channel */
|
|
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->TXDR, hspi->TxXferCount))
|
|
{
|
|
/* Update SPI error code */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
|
errorcode = HAL_ERROR;
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
return errorcode;
|
|
}
|
|
|
|
if (hspi->hdmatx->Init.Mode == DMA_CIRCULAR)
|
|
{
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, 0UL);
|
|
}
|
|
else
|
|
{
|
|
MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size);
|
|
}
|
|
|
|
/* Enable Tx DMA Request */
|
|
SET_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN);
|
|
|
|
/* Enable the SPI Error Interrupt Bit */
|
|
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_OVR | SPI_IT_UDR | SPI_IT_FRE | SPI_IT_MODF));
|
|
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
|
|
if (hspi->Init.Mode == SPI_MODE_MASTER)
|
|
{
|
|
/* Master transfer start */
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART);
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
return errorcode;
|
|
}
|
|
|
|
/**
|
|
* @brief Abort ongoing transfer (blocking mode).
|
|
* @param hspi SPI handle.
|
|
* @note This procedure could be used for aborting any ongoing transfer (Tx and Rx),
|
|
* started in Interrupt or DMA mode.
|
|
* @note This procedure performs following operations :
|
|
* + Disable SPI Interrupts (depending of transfer direction)
|
|
* + Disable the DMA transfer in the peripheral register (if enabled)
|
|
* + Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
|
|
* + Set handle State to READY.
|
|
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi)
|
|
{
|
|
HAL_StatusTypeDef errorcode;
|
|
|
|
__IO uint32_t count;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
/* Set hspi->state to aborting to avoid any interaction */
|
|
hspi->State = HAL_SPI_STATE_ABORT;
|
|
|
|
/* Initialized local variable */
|
|
errorcode = HAL_OK;
|
|
count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24UL / 1000UL);
|
|
|
|
/* If master communication on going, make sure current frame is done before closing the connection */
|
|
if (HAL_IS_BIT_SET(hspi->Instance->CR1, SPI_CR1_CSTART))
|
|
{
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSUSP);
|
|
do
|
|
{
|
|
count--;
|
|
if (count == 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
|
break;
|
|
}
|
|
}
|
|
while (HAL_IS_BIT_SET(hspi->Instance->CR1, SPI_CR1_CSTART));
|
|
}
|
|
|
|
/* Disable the SPI DMA Tx request if enabled */
|
|
if (HAL_IS_BIT_SET(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN))
|
|
{
|
|
if (hspi->hdmatx != NULL)
|
|
{
|
|
/* Abort the SPI DMA Tx Stream/Channel : use blocking DMA Abort API (no callback) */
|
|
hspi->hdmatx->XferAbortCallback = NULL;
|
|
|
|
/* Abort DMA Tx Handle linked to SPI Peripheral */
|
|
if (HAL_DMA_Abort(hspi->hdmatx) != HAL_OK)
|
|
{
|
|
if (HAL_DMA_GetError(hspi->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
|
|
{
|
|
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Disable the SPI DMA Rx request if enabled */
|
|
if (HAL_IS_BIT_SET(hspi->Instance->CFG1, SPI_CFG1_RXDMAEN))
|
|
{
|
|
if (hspi->hdmarx != NULL)
|
|
{
|
|
/* Abort the SPI DMA Rx Stream/Channel : use blocking DMA Abort API (no callback) */
|
|
hspi->hdmarx->XferAbortCallback = NULL;
|
|
|
|
/* Abort DMA Rx Handle linked to SPI Peripheral */
|
|
if (HAL_DMA_Abort(hspi->hdmarx) != HAL_OK)
|
|
{
|
|
if (HAL_DMA_GetError(hspi->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
|
|
{
|
|
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Proceed with abort procedure */
|
|
SPI_AbortTransfer(hspi);
|
|
|
|
/* Check error during Abort procedure */
|
|
if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT)
|
|
{
|
|
/* return HAL_Error in case of error during Abort procedure */
|
|
errorcode = HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Reset errorCode */
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
/* Restore hspi->state to ready */
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
return errorcode;
|
|
}
|
|
|
|
/**
|
|
* @brief Abort ongoing transfer (Interrupt mode).
|
|
* @param hspi SPI handle.
|
|
* @note This procedure could be used for aborting any ongoing transfer (Tx and Rx),
|
|
* started in Interrupt or DMA mode.
|
|
* @note This procedure performs following operations :
|
|
* + Disable SPI Interrupts (depending of transfer direction)
|
|
* + Disable the DMA transfer in the peripheral register (if enabled)
|
|
* + Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
|
|
* + Set handle State to READY
|
|
* + At abort completion, call user abort complete callback.
|
|
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
|
|
* considered as completed only when user abort complete callback is executed (not when exiting function).
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi)
|
|
{
|
|
HAL_StatusTypeDef errorcode;
|
|
__IO uint32_t count;
|
|
uint32_t dma_tx_abort_done = 1UL, dma_rx_abort_done = 1UL;
|
|
|
|
/* Set hspi->state to aborting to avoid any interaction */
|
|
hspi->State = HAL_SPI_STATE_ABORT;
|
|
|
|
/* Initialized local variable */
|
|
errorcode = HAL_OK;
|
|
count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24UL / 1000UL);
|
|
|
|
/* If master communication on going, make sure current frame is done before closing the connection */
|
|
if (HAL_IS_BIT_SET(hspi->Instance->CR1, SPI_CR1_CSTART))
|
|
{
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CSUSP);
|
|
do
|
|
{
|
|
count--;
|
|
if (count == 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
|
break;
|
|
}
|
|
}
|
|
while (HAL_IS_BIT_SET(hspi->Instance->CR1, SPI_CR1_CSTART));
|
|
}
|
|
|
|
/* If DMA Tx and/or DMA Rx Handles are associated to SPI Handle, DMA Abort complete callbacks should be initialized
|
|
before any call to DMA Abort functions */
|
|
|
|
if(hspi->hdmatx != NULL)
|
|
{
|
|
if (HAL_IS_BIT_SET(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN))
|
|
{
|
|
/* Set DMA Abort Complete callback if SPI DMA Tx request if enabled */
|
|
hspi->hdmatx->XferAbortCallback = SPI_DMATxAbortCallback;
|
|
|
|
dma_tx_abort_done = 0UL;
|
|
|
|
/* Abort DMA Tx Handle linked to SPI Peripheral */
|
|
if (HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK)
|
|
{
|
|
if (HAL_DMA_GetError(hspi->hdmatx) == HAL_DMA_ERROR_NO_XFER)
|
|
{
|
|
dma_tx_abort_done = 1UL;
|
|
hspi->hdmatx->XferAbortCallback = NULL;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hspi->hdmatx->XferAbortCallback = NULL;
|
|
}
|
|
}
|
|
|
|
if(hspi->hdmarx != NULL)
|
|
{
|
|
if (HAL_IS_BIT_SET(hspi->Instance->CFG1, SPI_CFG1_RXDMAEN))
|
|
{
|
|
/* Set DMA Abort Complete callback if SPI DMA Rx request if enabled */
|
|
hspi->hdmarx->XferAbortCallback = SPI_DMARxAbortCallback;
|
|
|
|
dma_rx_abort_done = 0UL;
|
|
|
|
/* Abort DMA Rx Handle linked to SPI Peripheral */
|
|
if (HAL_DMA_Abort_IT(hspi->hdmarx) != HAL_OK)
|
|
{
|
|
if (HAL_DMA_GetError(hspi->hdmarx) == HAL_DMA_ERROR_NO_XFER)
|
|
{
|
|
dma_rx_abort_done = 1UL;
|
|
hspi->hdmarx->XferAbortCallback = NULL;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hspi->hdmarx->XferAbortCallback = NULL;
|
|
}
|
|
}
|
|
|
|
/* If no running DMA transfer, finish cleanup and call callbacks */
|
|
if ((dma_tx_abort_done == 1UL) && (dma_rx_abort_done == 1UL))
|
|
{
|
|
/* Proceed with abort procedure */
|
|
SPI_AbortTransfer(hspi);
|
|
|
|
/* Check error during Abort procedure */
|
|
if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT)
|
|
{
|
|
/* return HAL_Error in case of error during Abort procedure */
|
|
errorcode = HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Reset errorCode */
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
}
|
|
|
|
/* Restore hspi->state to ready */
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Call user Abort complete callback */
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->AbortCpltCallback(hspi);
|
|
#else
|
|
HAL_SPI_AbortCpltCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
return errorcode;
|
|
}
|
|
|
|
/**
|
|
* @brief Pause the DMA Transfer.
|
|
* This API is not supported, it is maintained for backward compatibility.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for the specified SPI module.
|
|
* @retval HAL_ERROR
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Set error code to not supported */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_NOT_SUPPORTED);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/**
|
|
* @brief Resume the DMA Transfer.
|
|
* This API is not supported, it is maintained for backward compatibility.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for the specified SPI module.
|
|
* @retval HAL_ERROR
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Set error code to not supported */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_NOT_SUPPORTED);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/**
|
|
* @brief Stop the DMA Transfer.
|
|
* This API is not supported, it is maintained for backward compatibility.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for the specified SPI module.
|
|
* @retval HAL_ERROR
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Set error code to not supported */
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_NOT_SUPPORTED);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/**
|
|
* @brief Handle SPI interrupt request.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for the specified SPI module.
|
|
* @retval None
|
|
*/
|
|
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi)
|
|
{
|
|
uint32_t itsource = hspi->Instance->IER;
|
|
uint32_t itflag = hspi->Instance->SR;
|
|
uint32_t trigger = itsource & itflag;
|
|
uint32_t cfg1 = hspi->Instance->CFG1;
|
|
uint32_t handled = 0UL;
|
|
|
|
HAL_SPI_StateTypeDef State = hspi->State;
|
|
|
|
|
|
/* SPI in mode Transmitter and Receiver ------------------------------------*/
|
|
if (HAL_IS_BIT_CLR(trigger, SPI_FLAG_OVR) && HAL_IS_BIT_CLR(trigger, SPI_FLAG_UDR) && HAL_IS_BIT_SET(trigger, SPI_FLAG_DXP))
|
|
{
|
|
hspi->TxISR(hspi);
|
|
hspi->RxISR(hspi);
|
|
handled = 1UL;
|
|
}
|
|
|
|
/* SPI in mode Receiver ----------------------------------------------------*/
|
|
if (HAL_IS_BIT_CLR(trigger, SPI_FLAG_OVR) && HAL_IS_BIT_SET(trigger, SPI_FLAG_RXP) && HAL_IS_BIT_CLR(trigger, SPI_FLAG_DXP))
|
|
{
|
|
hspi->RxISR(hspi);
|
|
handled = 1UL;
|
|
}
|
|
|
|
/* SPI in mode Transmitter -------------------------------------------------*/
|
|
if (HAL_IS_BIT_CLR(trigger, SPI_FLAG_UDR) && HAL_IS_BIT_SET(trigger, SPI_FLAG_TXP) && HAL_IS_BIT_CLR(trigger, SPI_FLAG_DXP))
|
|
{
|
|
hspi->TxISR(hspi);
|
|
handled = 1UL;
|
|
}
|
|
|
|
#if defined(USE_SPI_RELOAD_TRANSFER)
|
|
/* SPI Reload -------------------------------------------------*/
|
|
if (HAL_IS_BIT_SET(trigger, SPI_FLAG_TSERF))
|
|
{
|
|
hspi->Reload.Requested = 0UL;
|
|
__HAL_SPI_CLEAR_TSERFFLAG(hspi);
|
|
}
|
|
#endif /* USE_HSPI_RELOAD_TRANSFER */
|
|
|
|
if (handled != 0UL)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/* SPI End Of Transfer: DMA or IT based transfer */
|
|
if (HAL_IS_BIT_SET(trigger, SPI_FLAG_EOT))
|
|
{
|
|
/* Clear EOT/TXTF/SUSP flag */
|
|
__HAL_SPI_CLEAR_EOTFLAG(hspi);
|
|
__HAL_SPI_CLEAR_TXTFFLAG(hspi);
|
|
__HAL_SPI_CLEAR_SUSPFLAG(hspi);
|
|
|
|
/* Disable EOT interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_EOT);
|
|
|
|
/* DMA Normal Mode */
|
|
if (HAL_IS_BIT_CLR(cfg1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN) || // IT based transfer is done
|
|
((State != HAL_SPI_STATE_BUSY_RX) && (hspi->hdmatx->Init.Mode == DMA_NORMAL)) || // DMA is used in normal mode
|
|
((State != HAL_SPI_STATE_BUSY_TX) && (hspi->hdmarx->Init.Mode == DMA_NORMAL))) // DMA is used in normal mode
|
|
{
|
|
/* For the IT based receive extra polling maybe required for last packet */
|
|
if (HAL_IS_BIT_CLR(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN))
|
|
{
|
|
/* Pooling remaining data */
|
|
while (hspi->RxXferCount != 0UL)
|
|
{
|
|
/* Receive data in 32 Bit mode */
|
|
if (hspi->Init.DataSize > SPI_DATASIZE_16BIT)
|
|
{
|
|
*((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint32_t);
|
|
}
|
|
/* Receive data in 16 Bit mode */
|
|
else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
*((uint16_t *)hspi->pRxBuffPtr) = *((__IO uint16_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
}
|
|
/* Receive data in 8 Bit mode */
|
|
else
|
|
{
|
|
*((uint8_t *)hspi->pRxBuffPtr) = *((__IO uint8_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint8_t);
|
|
}
|
|
|
|
hspi->RxXferCount--;
|
|
}
|
|
}
|
|
|
|
/* Call SPI Standard close procedure */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
|
{
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->ErrorCallback(hspi);
|
|
#else
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
return;
|
|
}
|
|
}
|
|
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
/* Call appropriate user callback */
|
|
if (State == HAL_SPI_STATE_BUSY_TX_RX)
|
|
{
|
|
hspi->TxRxCpltCallback(hspi);
|
|
}
|
|
else if (State == HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
hspi->RxCpltCallback(hspi);
|
|
}
|
|
else if (State == HAL_SPI_STATE_BUSY_TX)
|
|
{
|
|
hspi->TxCpltCallback(hspi);
|
|
}
|
|
#else
|
|
/* Call appropriate user callback */
|
|
if (State == HAL_SPI_STATE_BUSY_TX_RX)
|
|
{
|
|
HAL_SPI_TxRxCpltCallback(hspi);
|
|
}
|
|
else if (State == HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
HAL_SPI_RxCpltCallback(hspi);
|
|
}
|
|
else if (State == HAL_SPI_STATE_BUSY_TX)
|
|
{
|
|
HAL_SPI_TxCpltCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
/* end of the appropriate call */
|
|
}
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
|
|
return;
|
|
}
|
|
|
|
if (HAL_IS_BIT_SET(itflag, SPI_FLAG_SUSP) && HAL_IS_BIT_SET(itsource, SPI_FLAG_EOT))
|
|
{
|
|
/* Abort on going, clear SUSP flag to avoid infinite looping */
|
|
__HAL_SPI_CLEAR_SUSPFLAG(hspi);
|
|
|
|
return;
|
|
}
|
|
|
|
/* SPI in Error Treatment --------------------------------------------------*/
|
|
if ((trigger & (SPI_FLAG_MODF | SPI_FLAG_OVR | SPI_FLAG_FRE | SPI_FLAG_UDR)) != 0UL)
|
|
{
|
|
/* SPI Overrun error interrupt occurred ----------------------------------*/
|
|
if ((trigger & SPI_FLAG_OVR) != 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR);
|
|
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
|
}
|
|
|
|
/* SPI Mode Fault error interrupt occurred -------------------------------*/
|
|
if ((trigger & SPI_FLAG_MODF) != 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF);
|
|
__HAL_SPI_CLEAR_MODFFLAG(hspi);
|
|
}
|
|
|
|
/* SPI Frame error interrupt occurred ------------------------------------*/
|
|
if ((trigger & SPI_FLAG_FRE) != 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FRE);
|
|
__HAL_SPI_CLEAR_FREFLAG(hspi);
|
|
}
|
|
|
|
/* SPI Underrun error interrupt occurred ------------------------------------*/
|
|
if ((trigger & SPI_FLAG_UDR) != 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_UDR);
|
|
__HAL_SPI_CLEAR_UDRFLAG(hspi);
|
|
}
|
|
|
|
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
|
{
|
|
/* Disable SPI peripheral */
|
|
__HAL_SPI_DISABLE(hspi);
|
|
|
|
/* Disable all interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_EOT | SPI_IT_RXP | SPI_IT_TXP | SPI_IT_MODF | SPI_IT_OVR | SPI_IT_FRE | SPI_IT_UDR);
|
|
|
|
/* Disable the SPI DMA requests if enabled */
|
|
if (HAL_IS_BIT_SET(cfg1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN))
|
|
{
|
|
/* Disable the SPI DMA requests */
|
|
CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN);
|
|
|
|
/* Abort the SPI DMA Rx channel */
|
|
if (hspi->hdmarx != NULL)
|
|
{
|
|
/* Set the SPI DMA Abort callback :
|
|
will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
|
|
hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError;
|
|
if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmarx))
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
|
}
|
|
}
|
|
/* Abort the SPI DMA Tx channel */
|
|
if (hspi->hdmatx != NULL)
|
|
{
|
|
/* Set the SPI DMA Abort callback :
|
|
will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
|
|
hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError;
|
|
if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmatx))
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Restore hspi->State to Ready */
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Call user error callback */
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->ErrorCallback(hspi);
|
|
#else
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Transfer completed callback.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_SPI_TxCpltCallback should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Rx Transfer completed callback.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_SPI_RxCpltCallback should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Tx and Rx Transfer completed callback.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_SPI_TxRxCpltCallback should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Half Transfer completed callback.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_SPI_TxHalfCpltCallback should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Rx Half Transfer completed callback.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Tx and Rx Half Transfer callback.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief SPI error callback.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_SPI_ErrorCallback should be implemented in the user file
|
|
*/
|
|
/* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes
|
|
and user can use HAL_SPI_GetError() API to check the latest error occurred
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief SPI Abort Complete callback.
|
|
* @param hspi SPI handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_SPI_AbortCpltCallback can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions
|
|
* @brief SPI control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral State and Errors functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to control the SPI.
|
|
(+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral
|
|
(+) HAL_SPI_GetError() check in run-time Errors occurring during communication
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Return the SPI handle state.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval SPI state
|
|
*/
|
|
HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Return SPI handle state */
|
|
return hspi->State;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the SPI error code.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval SPI error code in bitmap format
|
|
*/
|
|
uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Return SPI ErrorCode */
|
|
return hspi->ErrorCode;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @addtogroup SPI_Private_Functions
|
|
* @brief Private functions
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief DMA SPI transmit process complete callback.
|
|
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
* the configuration information for the specified DMA module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
if (hspi->State != HAL_SPI_STATE_ABORT)
|
|
{
|
|
if (hspi->hdmatx->Init.Mode == DMA_CIRCULAR)
|
|
{
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->TxCpltCallback(hspi);
|
|
#else
|
|
HAL_SPI_TxCpltCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
else
|
|
{
|
|
/* Enable EOT interrupt */
|
|
__HAL_SPI_ENABLE_IT(hspi, SPI_IT_EOT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI receive process complete callback.
|
|
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
* the configuration information for the specified DMA module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
if (hspi->State != HAL_SPI_STATE_ABORT)
|
|
{
|
|
if (hspi->hdmarx->Init.Mode == DMA_CIRCULAR)
|
|
{
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->RxCpltCallback(hspi);
|
|
#else
|
|
HAL_SPI_RxCpltCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
else
|
|
{
|
|
/* Enable EOT interrupt */
|
|
__HAL_SPI_ENABLE_IT(hspi, SPI_IT_EOT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI transmit receive process complete callback.
|
|
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
* the configuration information for the specified DMA module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
if (hspi->State != HAL_SPI_STATE_ABORT)
|
|
{
|
|
if (hspi->hdmatx->Init.Mode == DMA_CIRCULAR)
|
|
{
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->TxRxCpltCallback(hspi);
|
|
#else
|
|
HAL_SPI_TxRxCpltCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
else
|
|
{
|
|
/* Enable EOT interrupt */
|
|
__HAL_SPI_ENABLE_IT(hspi, SPI_IT_EOT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI half transmit process complete callback.
|
|
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
* the configuration information for the specified DMA module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->TxHalfCpltCallback(hspi);
|
|
#else
|
|
HAL_SPI_TxHalfCpltCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI half receive process complete callback
|
|
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
* the configuration information for the specified DMA module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->RxHalfCpltCallback(hspi);
|
|
#else
|
|
HAL_SPI_RxHalfCpltCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI half transmit receive process complete callback.
|
|
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
* the configuration information for the specified DMA module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->TxRxHalfCpltCallback(hspi);
|
|
#else
|
|
HAL_SPI_TxRxHalfCpltCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI communication error callback.
|
|
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
|
|
* the configuration information for the specified DMA module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
/* if DMA error is FIFO error ignore it */
|
|
if (HAL_DMA_GetError(hdma) != HAL_DMA_ERROR_FE)
|
|
{
|
|
/* Call SPI standard close procedure */
|
|
SPI_CloseTransfer(hspi);
|
|
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->ErrorCallback(hspi);
|
|
#else
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI communication abort callback, when initiated by HAL services on Error
|
|
* (To be called at end of DMA Abort procedure following error occurrence).
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
hspi->RxXferCount = (uint16_t) 0UL;
|
|
hspi->TxXferCount = (uint16_t) 0UL;
|
|
|
|
/* Restore hspi->State to Ready */
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->ErrorCallback(hspi);
|
|
#else
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI Tx communication abort callback, when initiated by user
|
|
* (To be called at end of DMA Tx Abort procedure following user abort request).
|
|
* @note When this callback is executed, User Abort complete call back is called only if no
|
|
* Abort still ongoing for Rx DMA Handle.
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
hspi->hdmatx->XferAbortCallback = NULL;
|
|
|
|
/* Check if an Abort process is still ongoing */
|
|
if (hspi->hdmarx != NULL)
|
|
{
|
|
if (hspi->hdmarx->XferAbortCallback != NULL)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Call the Abort procedure */
|
|
SPI_AbortTransfer(hspi);
|
|
|
|
/* Restore hspi->State to Ready */
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Call user Abort complete callback */
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->AbortCpltCallback(hspi);
|
|
#else
|
|
HAL_SPI_AbortCpltCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI Rx communication abort callback, when initiated by user
|
|
* (To be called at end of DMA Rx Abort procedure following user abort request).
|
|
* @note When this callback is executed, User Abort complete call back is called only if no
|
|
* Abort still ongoing for Tx DMA Handle.
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
hspi->hdmarx->XferAbortCallback = NULL;
|
|
|
|
/* Check if an Abort process is still ongoing */
|
|
if (hspi->hdmatx != NULL)
|
|
{
|
|
if (hspi->hdmatx->XferAbortCallback != NULL)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Call the Abort procedure */
|
|
SPI_AbortTransfer(hspi);
|
|
|
|
/* Restore hspi->State to Ready */
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Call user Abort complete callback */
|
|
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL)
|
|
hspi->AbortCpltCallback(hspi);
|
|
#else
|
|
HAL_SPI_AbortCpltCallback(hspi);
|
|
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief Manage the receive 8-bit in Interrupt context.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_RxISR_8BIT(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Receive data in 8 Bit mode */
|
|
*((uint8_t *)hspi->pRxBuffPtr) = (*(__IO uint8_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint8_t);
|
|
hspi->RxXferCount--;
|
|
|
|
/* Disable IT if no more data excepted */
|
|
if (hspi->RxXferCount == 0UL)
|
|
{
|
|
#if defined(USE_SPI_RELOAD_TRANSFER)
|
|
/* Check if there is any request to reload */
|
|
if (hspi->Reload.Requested == 1UL)
|
|
{
|
|
hspi->RxXferSize = hspi->Reload.RxXferSize;
|
|
hspi->RxXferCount = hspi->Reload.RxXferSize;
|
|
hspi->pRxBuffPtr = hspi->Reload.pRxBuffPtr;
|
|
}
|
|
else
|
|
{
|
|
/* Disable RXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP);
|
|
}
|
|
#else
|
|
/* Disable RXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP);
|
|
#endif /* USE_HSPI_RELOAD_TRANSFER */
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Manage the 16-bit receive in Interrupt context.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_RxISR_16BIT(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Receive data in 16 Bit mode */
|
|
*((uint16_t *)hspi->pRxBuffPtr) = (*(__IO uint16_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount--;
|
|
|
|
/* Disable IT if no more data excepted */
|
|
if (hspi->RxXferCount == 0UL)
|
|
{
|
|
#if defined(USE_SPI_RELOAD_TRANSFER)
|
|
/* Check if there is any request to reload */
|
|
if (hspi->Reload.Requested == 1UL)
|
|
{
|
|
hspi->RxXferSize = hspi->Reload.RxXferSize;
|
|
hspi->RxXferCount = hspi->Reload.RxXferSize;
|
|
hspi->pRxBuffPtr = hspi->Reload.pRxBuffPtr;
|
|
}
|
|
else
|
|
{
|
|
/* Disable RXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP);
|
|
}
|
|
#else
|
|
/* Disable RXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP);
|
|
#endif /* USE_HSPI_RELOAD_TRANSFER */
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Manage the 32-bit receive in Interrupt context.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_RxISR_32BIT(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Receive data in 32 Bit mode */
|
|
*((uint32_t *)hspi->pRxBuffPtr) = (*(__IO uint32_t *)&hspi->Instance->RXDR);
|
|
hspi->pRxBuffPtr += sizeof(uint32_t);
|
|
hspi->RxXferCount--;
|
|
|
|
/* Disable IT if no more data excepted */
|
|
if (hspi->RxXferCount == 0UL)
|
|
{
|
|
#if defined(USE_SPI_RELOAD_TRANSFER)
|
|
/* Check if there is any request to reload */
|
|
if (hspi->Reload.Requested == 1UL)
|
|
{
|
|
hspi->RxXferSize = hspi->Reload.RxXferSize;
|
|
hspi->RxXferCount = hspi->Reload.RxXferSize;
|
|
hspi->pRxBuffPtr = hspi->Reload.pRxBuffPtr;
|
|
}
|
|
else
|
|
{
|
|
/* Disable RXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP);
|
|
}
|
|
#else
|
|
/* Disable RXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP);
|
|
#endif /* USE_HSPI_RELOAD_TRANSFER */
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Handle the data 8-bit transmit in Interrupt mode.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_TxISR_8BIT(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Transmit data in 8 Bit mode */
|
|
*(__IO uint8_t *)&hspi->Instance->TXDR = *((uint8_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint8_t);
|
|
hspi->TxXferCount--;
|
|
|
|
/* Disable IT if no more data excepted */
|
|
if (hspi->TxXferCount == 0UL)
|
|
{
|
|
#if defined(USE_SPI_RELOAD_TRANSFER)
|
|
/* Check if there is any request to reload */
|
|
if (hspi->Reload.Requested == 1UL)
|
|
{
|
|
hspi->TxXferSize = hspi->Reload.TxXferSize;
|
|
hspi->TxXferCount = hspi->Reload.TxXferSize;
|
|
hspi->pTxBuffPtr = hspi->Reload.pTxBuffPtr;
|
|
}
|
|
else
|
|
{
|
|
/* Disable TXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP);
|
|
}
|
|
#else
|
|
/* Disable TXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP);
|
|
#endif /* USE_HSPI_RELOAD_TRANSFER */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Handle the data 16-bit transmit in Interrupt mode.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_TxISR_16BIT(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Transmit data in 16 Bit mode */
|
|
*((__IO uint16_t *)&hspi->Instance->TXDR) = *((uint16_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount--;
|
|
|
|
/* Disable IT if no more data excepted */
|
|
if (hspi->TxXferCount == 0UL)
|
|
{
|
|
#if defined(USE_SPI_RELOAD_TRANSFER)
|
|
/* Check if there is any request to reload */
|
|
if (hspi->Reload.Requested == 1UL)
|
|
{
|
|
hspi->TxXferSize = hspi->Reload.TxXferSize;
|
|
hspi->TxXferCount = hspi->Reload.TxXferSize;
|
|
hspi->pTxBuffPtr = hspi->Reload.pTxBuffPtr;
|
|
}
|
|
else
|
|
{
|
|
/* Disable TXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP);
|
|
}
|
|
#else
|
|
/* Disable TXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP);
|
|
#endif /* USE_HSPI_RELOAD_TRANSFER */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Handle the data 32-bit transmit in Interrupt mode.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_TxISR_32BIT(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Transmit data in 32 Bit mode */
|
|
*((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint32_t);
|
|
hspi->TxXferCount--;
|
|
|
|
/* Disable IT if no more data excepted */
|
|
if (hspi->TxXferCount == 0UL)
|
|
{
|
|
#if defined(USE_SPI_RELOAD_TRANSFER)
|
|
/* Check if there is any request to reload */
|
|
if (hspi->Reload.Requested == 1UL)
|
|
{
|
|
hspi->TxXferSize = hspi->Reload.TxXferSize;
|
|
hspi->TxXferCount = hspi->Reload.TxXferSize;
|
|
hspi->pTxBuffPtr = hspi->Reload.pTxBuffPtr;
|
|
}
|
|
else
|
|
{
|
|
/* Disable TXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP);
|
|
}
|
|
#else
|
|
/* Disable TXP interrupts */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP);
|
|
#endif /* USE_HSPI_RELOAD_TRANSFER */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Abort Transfer and clear flags.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval None
|
|
*/
|
|
static void SPI_AbortTransfer(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Disable SPI peripheral */
|
|
__HAL_SPI_DISABLE(hspi);
|
|
|
|
/* Disable ITs */
|
|
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_EOT | SPI_IT_TXP | SPI_IT_RXP | SPI_IT_DXP | SPI_IT_UDR | SPI_IT_OVR | SPI_IT_FRE | SPI_IT_MODF));
|
|
|
|
/* Clear the Status flags in the SR register */
|
|
__HAL_SPI_CLEAR_EOTFLAG(hspi);
|
|
__HAL_SPI_CLEAR_TXTFFLAG(hspi);
|
|
|
|
/* Disable Tx DMA Request */
|
|
CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN);
|
|
|
|
/* Clear the Error flags in the SR register */
|
|
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
|
__HAL_SPI_CLEAR_UDRFLAG(hspi);
|
|
__HAL_SPI_CLEAR_FREFLAG(hspi);
|
|
__HAL_SPI_CLEAR_MODFFLAG(hspi);
|
|
__HAL_SPI_CLEAR_SUSPFLAG(hspi);
|
|
|
|
#if (USE_SPI_CRC != 0U)
|
|
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
|
#endif /* USE_SPI_CRC */
|
|
|
|
hspi->TxXferCount = (uint16_t)0UL;
|
|
hspi->RxXferCount = (uint16_t)0UL;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Close Transfer and clear flags.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval HAL_ERROR: if any error detected
|
|
* HAL_OK: if nothing detected
|
|
*/
|
|
static void SPI_CloseTransfer(SPI_HandleTypeDef *hspi)
|
|
{
|
|
uint32_t itflag = hspi->Instance->SR;
|
|
|
|
__HAL_SPI_CLEAR_EOTFLAG(hspi);
|
|
__HAL_SPI_CLEAR_TXTFFLAG(hspi);
|
|
|
|
/* Disable SPI peripheral */
|
|
__HAL_SPI_DISABLE(hspi);
|
|
|
|
/* Disable ITs */
|
|
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_EOT | SPI_IT_TXP | SPI_IT_RXP | SPI_IT_DXP | SPI_IT_UDR | SPI_IT_OVR | SPI_IT_FRE | SPI_IT_MODF));
|
|
|
|
/* Disable Tx DMA Request */
|
|
CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN);
|
|
|
|
/* Report UnderRun error for non RX Only communication */
|
|
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
if ((itflag & SPI_FLAG_UDR) != 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_UDR);
|
|
__HAL_SPI_CLEAR_UDRFLAG(hspi);
|
|
}
|
|
}
|
|
|
|
/* Report OverRun error for non TX Only communication */
|
|
if (hspi->State != HAL_SPI_STATE_BUSY_TX)
|
|
{
|
|
if ((itflag & SPI_FLAG_OVR) != 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR);
|
|
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
|
}
|
|
|
|
#if (USE_SPI_CRC != 0UL)
|
|
/* Check if CRC error occurred */
|
|
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
|
{
|
|
if ((itflag & SPI_FLAG_CRCERR) != 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
|
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
|
}
|
|
}
|
|
#endif /* USE_SPI_CRC */
|
|
}
|
|
|
|
/* SPI Mode Fault error interrupt occurred -------------------------------*/
|
|
if ((itflag & SPI_FLAG_MODF) != 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF);
|
|
__HAL_SPI_CLEAR_MODFFLAG(hspi);
|
|
}
|
|
|
|
/* SPI Frame error interrupt occurred ------------------------------------*/
|
|
if ((itflag & SPI_FLAG_FRE) != 0UL)
|
|
{
|
|
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FRE);
|
|
__HAL_SPI_CLEAR_FREFLAG(hspi);
|
|
}
|
|
|
|
hspi->TxXferCount = (uint16_t)0UL;
|
|
hspi->RxXferCount = (uint16_t)0UL;
|
|
}
|
|
|
|
/**
|
|
* @brief Handle SPI Communication Timeout.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @param Flag: SPI flag to check
|
|
* @param Status: flag state to check
|
|
* @param Timeout: Timeout duration
|
|
* @param Tickstart: Tick start value
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef SPI_WaitOnFlagUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus Status,
|
|
uint32_t Tickstart, uint32_t Timeout)
|
|
{
|
|
/* Wait until flag is set */
|
|
while ((__HAL_SPI_GET_FLAG(hspi, Flag) ? SET : RESET) == Status)
|
|
{
|
|
/* Check for the Timeout */
|
|
if ((((HAL_GetTick() - Tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Compute configured packet size from fifo perspective.
|
|
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
|
|
* the configuration information for SPI module.
|
|
* @retval Packet size occupied in the fifo
|
|
*/
|
|
static uint32_t SPI_GetPacketSize(SPI_HandleTypeDef *hspi)
|
|
{
|
|
uint32_t fifo_threashold = (hspi->Init.FifoThreshold >> SPI_CFG1_FTHLV_Pos) + 1UL;
|
|
uint32_t data_size = (hspi->Init.DataSize >> SPI_CFG1_DSIZE_Pos) + 1UL;
|
|
|
|
/* Convert data size to Byte */
|
|
data_size = (data_size + 7UL) / 8UL;
|
|
|
|
return data_size * fifo_threashold;
|
|
}
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_SPI_MODULE_ENABLED */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|