mbed-os/targets/TARGET_TI/TARGET_MSP432/spi_api.c

636 lines
19 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2019 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Low-level implementation of SPI functionality for MSP432.
* This implementation does also support DEVICE_SPISLAVE and DEVICE_SPI_ASYNCH.
*/
#include "spi_api.h"
#include "mbed_assert.h"
#if DEVICE_SPI
/* With SPI_ASYNCH, our type spi_s is embedded
* into a bigger structure (see spi_api.h). So we
* need a macro to extract the spi_s object.
*/
#if DEVICE_SPI_ASYNCH
#define SPI_S(obj) (&((obj)->spi))
#else
#define SPI_S(obj) (obj)
#endif
#if DEVICE_SPI_ASYNCH
// Array with object pointers for ISR
spi_t *spi_objects[8] = {0};
#endif
/**
* Returns a variant of the SPIName enum uniquely identifying a SPI peripheral of the device.
* @param[in] mosi The pin to use for MOSI
* @param[in] miso The pin to use for MISO
* @param[in] sclk The pin to use for SCLK
* @return An SPI peripheral identifier
*/
SPIName spi_get_peripheral_name(PinName mosi, PinName miso, PinName sclk)
{
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_per, spi_data;
// miso or mosi might be NC (3 wire SPI)
spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
MBED_ASSERT(spi_data != (SPIName)NC);
spi_per = (SPIName)pinmap_merge(spi_data, spi_sclk);
return spi_per;
}
/** Initialize the SPI peripheral
*
* Configures the pins used by SPI, sets a default format and frequency, and enables the peripheral
* @param[out] obj The SPI object to initialize
* @param[in] mosi The pin to use for MOSI
* @param[in] miso The pin to use for MISO
* @param[in] sclk The pin to use for SCLK
* @param[in] ssel The pin to use for SSEL
*/
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
struct spi_s *objs = SPI_S(obj);
// Get the SPI peripheral
objs->spi = spi_get_peripheral_name(mosi, miso, sclk);
// Check if SSEL/CS fits
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
objs->spi = pinmap_merge(objs->spi, spi_ssel);
MBED_ASSERT(objs->spi != (SPIName)NC);
// Get the type of EUSCI interface (Type A or B)
objs->module = GET_DATA_CHAN(pinmap_function(mosi, PinMap_SPI_MOSI));
// Set register addresses
if (objs->module < 4) {
// Get the SPI base
EUSCI_A_SPI_Type *EUSCI = (EUSCI_A_SPI_Type *)objs->spi;
objs->EUSCI_CTLW0 = &EUSCI->CTLW0;
objs->EUSCI_BRW = &EUSCI->BRW;
objs->EUSCI_STATW = &EUSCI->STATW;
objs->EUSCI_RXBUF = &EUSCI->RXBUF;
objs->EUSCI_TXBUF = &EUSCI->TXBUF;
objs->EUSCI_IE = &EUSCI->IE;
objs->EUSCI_IFG = &EUSCI->IFG;
objs->EUSCI_IV = &EUSCI->IV;
} else {
// Get the SPI base
EUSCI_B_SPI_Type *EUSCI = (EUSCI_B_SPI_Type *)objs->spi;
objs->EUSCI_CTLW0 = &EUSCI->CTLW0;
objs->EUSCI_BRW = &EUSCI->BRW;
objs->EUSCI_STATW = &EUSCI->STATW;
objs->EUSCI_RXBUF = &EUSCI->RXBUF;
objs->EUSCI_TXBUF = &EUSCI->TXBUF;
objs->EUSCI_IE = &EUSCI->IE;
objs->EUSCI_IFG = &EUSCI->IFG;
objs->EUSCI_IV = &EUSCI->IV;
}
/* Configure SPI pins */
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
pinmap_pinout(ssel, PinMap_SPI_SSEL);
// Store pins in SPI object
objs->pin_miso = miso;
objs->pin_mosi = mosi;
objs->pin_sclk = sclk;
objs->pin_ssel = ssel;
/* Put EUSCI to reset state */
BITBAND_PERI(*(objs->EUSCI_CTLW0), EUSCI_B_CTLW0_SWRST_OFS) = 1;
/* Configure basic SPI mode */
uint16_t ctlw0;
if (ssel == (PinName)NC) {
ctlw0 = EUSCI_B_CTLW0_MODE_0; // 3 pin SPI mode
} else {
ctlw0 = EUSCI_B_CTLW0_MODE_2 | // 4 pin SPI mode
EUSCI_A_CTLW0_STEM; // use STE as SSEL/CS
}
ctlw0 |= EUSCI_A_CTLW0_MSB | // MSB first
EUSCI_A_CTLW0_SYNC | // SYNC mode (SPI)
EUSCI_B_CTLW0_SSEL__SMCLK; // SMCLK as clock source
*(objs->EUSCI_CTLW0) = ctlw0;
// Set SPI clock to default 1 MHz */
spi_frequency(obj, 1000000);
// Disable and clear interrupts
*(objs->EUSCI_IE) = 0;
*(objs->EUSCI_IFG) = 0;
// Clear the EUSCI reset state (enable module)
BITBAND_PERI(*(objs->EUSCI_CTLW0), EUSCI_B_CTLW0_SWRST_OFS) = 0;
#if DEVICE_SPI_ASYNCH
// Store the object pointer for the ISR
spi_objects[objs->module] = obj;
objs->active = false;
/* Enable the NVIC irq for this SPI module */
NVIC_EnableIRQ((IRQn_Type)(EUSCIA0_IRQn + objs->module));
#endif
}
/** Release a SPI object
*
* TODO: spi_free is currently unimplemented
* This will require reference counting at the C++ level to be safe
*
* Return the pins owned by the SPI object to their reset state
* Disable the SPI peripheral
* Disable the SPI clock
* @param[in] obj The SPI object to deinitialize
*/
void spi_free(spi_t *obj)
{
struct spi_s *objs = SPI_S(obj);
// Put EUSCI to reset state
BITBAND_PERI(*(objs->EUSCI_CTLW0), EUSCI_B_CTLW0_SWRST_OFS) = 1;
// Put pins to default state
int pin_data = MSP432_PIN_DATA(SEL0, PIN_INPUT, PullNone, 0);
pin_function(objs->pin_miso, pin_data);
pin_function(objs->pin_mosi, pin_data);
pin_function(objs->pin_sclk, pin_data);
pin_function(objs->pin_ssel, pin_data);
}
/** Configure the SPI format
*
* Set the number of bits per frame, configure clock polarity and phase, shift order and master/slave mode.
* The default bit order is MSB.
* @param[in,out] obj The SPI object to configure
* @param[in] bits The number of bits per frame
* @param[in] mode The SPI mode (clock polarity, phase, and shift direction)
* @param[in] slave Zero for master mode or non-zero for slave mode
*/
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
struct spi_s *objs = SPI_S(obj);
// Put the EUSCI to reset state
BITBAND_PERI(*(objs->EUSCI_CTLW0), EUSCI_B_CTLW0_SWRST_OFS) = 1;
// Set bit size
MBED_ASSERT((bits >= 7) && (bits <= 8));
BITBAND_PERI(*(objs->EUSCI_CTLW0), EUSCI_B_CTLW0_SEVENBIT_OFS) = (bits == 7);
// Set SPI clock polarity
BITBAND_PERI(*(objs->EUSCI_CTLW0), EUSCI_B_CTLW0_CKPL_OFS) = (mode >> 1);
// Set SPI clock phase
BITBAND_PERI(*(objs->EUSCI_CTLW0), EUSCI_B_CTLW0_CKPH_OFS) = (mode ^ 1);
// Set master/slave mode
BITBAND_PERI(*(objs->EUSCI_CTLW0), EUSCI_B_CTLW0_MST_OFS) = !slave;
// Clear the EUSCI reset state (enable module)
BITBAND_PERI(*(objs->EUSCI_CTLW0), EUSCI_B_CTLW0_SWRST_OFS) = 0;
}
/** Set the SPI baud rate
*
* Actual frequency may differ from the desired frequency due to available dividers and bus clock
* Configures the SPI peripheral's baud rate
* @param[in,out] obj The SPI object to configure
* @param[in] hz The baud rate in Hz
*/
void spi_frequency(spi_t *obj, int hz)
{
struct spi_s *objs = SPI_S(obj);
*(objs->EUSCI_BRW) = SubsystemMasterClock / hz;
}
/** Write a byte out in master mode and receive a value
*
* @param[in] obj The SPI peripheral to use for sending
* @param[in] value The value to send
* @return Returns the value received during send
*/
int spi_master_write(spi_t *obj, int value)
{
struct spi_s *objs = SPI_S(obj);
*(objs->EUSCI_IFG) = 0;
*(objs->EUSCI_STATW) = 0;
/* Place character in buffer */
*(objs->EUSCI_TXBUF) = value;
// Wait until byte has been received
while (!BITBAND_PERI(*(objs->EUSCI_IFG), EUSCI_B_IFG_RXIFG_OFS));
return *(objs->EUSCI_RXBUF);
}
/** Write a block out in master mode and receive a value
*
* The total number of bytes sent and received will be the maximum of
* tx_length and rx_length. The bytes written will be padded with the
* value 0xff.
*
* @param[in] obj The SPI peripheral to use for sending
* @param[in] tx_buffer Pointer to the byte-array of data to write to the device
* @param[in] tx_length Number of bytes to write, may be zero
* @param[in] rx_buffer Pointer to the byte-array of data to read from the device
* @param[in] rx_length Number of bytes to read, may be zero
* @param[in] write_fill Default data transmitted while performing a read
* @returns
* The number of bytes written and read from the device. This is
* maximum of tx_length and rx_length.
*/
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length,
char write_fill)
{
struct spi_s *objs = SPI_S(obj);
// Clear interrupt status
*(objs->EUSCI_IFG) = 0;
*(objs->EUSCI_STATW) = 0;
// Calculate maximum transfer length
int i, total = (tx_length > rx_length) ? tx_length : rx_length;
for (i = 0; i < total; i++) {
// Place character in buffer
*(objs->EUSCI_TXBUF) = (i < tx_length) ? tx_buffer[i] : write_fill;
// Wait until byte has been received
while (!BITBAND_PERI(*(objs->EUSCI_IFG), EUSCI_B_IFG_RXIFG_OFS));
// Fill receive buffer
if (i < rx_length) {
rx_buffer[i] = *(objs->EUSCI_RXBUF);
}
}
return total;
}
/** Checks if the specified SPI peripheral is in use
*
* @param[in] obj The SPI peripheral to check
* @return non-zero if the peripheral is currently transmitting
*/
int spi_busy(spi_t *obj)
{
struct spi_s *objs = SPI_S(obj);
return *(objs->EUSCI_STATW) & EUSCI_B_STATW_SPI_BUSY;
}
/** Get the module number
*
* @param[in] obj The SPI peripheral to check
* @return The module number
*/
uint8_t spi_get_module(spi_t *obj)
{
struct spi_s *objs = SPI_S(obj);
return objs->module;
}
/** Get the pins that support SPI MOSI
*
* Return a PinMap array of pins that support SPI MOSI in
* master mode. The array is terminated with {NC, NC, 0}.
*
* @return PinMap array
*/
const PinMap *spi_master_mosi_pinmap(void)
{
return PinMap_SPI_MOSI;
}
/** Get the pins that support SPI MISO
*
* Return a PinMap array of pins that support SPI MISO in
* master mode. The array is terminated with {NC, NC, 0}.
*
* @return PinMap array
*/
const PinMap *spi_master_miso_pinmap(void)
{
return PinMap_SPI_MISO;
}
/** Get the pins that support SPI CLK
*
* Return a PinMap array of pins that support SPI CLK in
* master mode. The array is terminated with {NC, NC, 0}.
*
* @return PinMap array
*/
const PinMap *spi_master_clk_pinmap(void)
{
return PinMap_SPI_SCLK;
}
/** Get the pins that support SPI CS
*
* Return a PinMap array of pins that support SPI CS in
* master mode. The array is terminated with {NC, NC, 0}.
*
* @return PinMap array
*/
const PinMap *spi_master_cs_pinmap(void)
{
return PinMap_SPI_SSEL;
}
#if DEVICE_SPISLAVE
/** Check if a value is available to read
*
* @param[in] obj The SPI peripheral to check
* @return non-zero if a value is available
*/
int spi_slave_receive(spi_t *obj)
{
struct spi_s *objs = SPI_S(obj);
return BITBAND_PERI(*(objs->EUSCI_IFG), EUSCI_B_IFG_RXIFG_OFS);
}
/** Get a received value out of the SPI receive buffer in slave mode
*
* Blocks until a value is available
* @param[in] obj The SPI peripheral to read
* @return The value received
*/
int spi_slave_read(spi_t *obj)
{
struct spi_s *objs = SPI_S(obj);
while (!BITBAND_PERI(*(objs->EUSCI_IFG), EUSCI_B_IFG_RXIFG_OFS)) ;
return *(objs->EUSCI_RXBUF);
}
/** Write a value to the SPI peripheral in slave mode
*
* Blocks until the SPI peripheral can be written to
* @param[in] obj The SPI peripheral to write
* @param[in] value The value to write
*/
void spi_slave_write(spi_t *obj, int value)
{
struct spi_s *objs = SPI_S(obj);
while (!BITBAND_PERI(*(objs->EUSCI_IFG), EUSCI_B_IFG_TXIFG_OFS)) ;
*(objs->EUSCI_TXBUF) = value;
}
/** Get the pins that support SPI MOSI
*
* Return a PinMap array of pins that support SPI MOSI in
* slave mode. The array is terminated with {NC, NC, 0}.
*
* @return PinMap array
*/
const PinMap *spi_slave_mosi_pinmap(void)
{
return PinMap_SPI_MOSI;
}
/** Get the pins that support SPI MISO
*
* Return a PinMap array of pins that support SPI MISO in
* slave mode. The array is terminated with {NC, NC, 0}.
*
* @return PinMap array
*/
const PinMap *spi_slave_miso_pinmap(void)
{
return PinMap_SPI_MISO;
}
/** Get the pins that support SPI CLK
*
* Return a PinMap array of pins that support SPI CLK in
* slave mode. The array is terminated with {NC, NC, 0}.
*
* @return PinMap array
*/
const PinMap *spi_slave_clk_pinmap(void)
{
return PinMap_SPI_SCLK;
}
/** Get the pins that support SPI CS
*
* Return a PinMap array of pins that support SPI CS in
* slave mode. The array is terminated with {NC, NC, 0}.
*
* @return PinMap array
*/
const PinMap *spi_slave_cs_pinmap(void)
{
return PinMap_SPI_SSEL;
}
#endif // DEVICE_SPISLAVE
#if DEVICE_SPI_ASYNCH
/**
* \defgroup AsynchSPI Asynchronous SPI Hardware Abstraction Layer
* @{
*/
/** Begin the SPI transfer. Buffer pointers and lengths are specified in tx_buff and rx_buff
*
* @param[in] obj The SPI object that holds the transfer information
* @param[in] tx The transmit buffer
* @param[in] tx_length The number of bytes to transmit
* @param[in] rx The receive buffer
* @param[in] rx_length The number of bytes to receive
* @param[in] bit_width The bit width of buffer words
* @param[in] event The logical OR of events to be registered
* @param[in] handler SPI interrupt handler
* @param[in] hint A suggestion for how to use DMA with this transfer
*/
void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length,
uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
// We ignore DMA for now
(void) hint;
struct spi_s *objs = SPI_S(obj);
// Update object
obj->tx_buff.buffer = (void *)tx;
obj->tx_buff.length = tx_length;
obj->tx_buff.pos = 0;
obj->tx_buff.width = bit_width;
obj->rx_buff.buffer = (void *)rx;
obj->rx_buff.length = rx_length;
obj->rx_buff.pos = 0;
obj->rx_buff.width = bit_width;
objs->handler = (void (*)(void))handler;
objs->event = 0;
objs->available_events = event;
// Start the ball rolling by enabling TX/RX interrupts
uint16_t ie = 0;
if (tx_length) {
ie |= EUSCI_B_IE_TXIE;
}
if (rx_length) {
ie |= EUSCI_B_IE_RXIE;
}
if (ie) {
objs->active = true;
*(objs->EUSCI_IE) = ie;
}
}
/** The asynchronous IRQ handler
*
* Reads the received values out of the RX FIFO, writes values into the TX FIFO and checks for transfer termination
* conditions, such as buffer overflows or transfer complete.
* @param[in] obj The SPI object that holds the transfer information
* @return Event flags if a transfer termination condition was met; otherwise 0.
*/
uint32_t spi_irq_handler_asynch(spi_t *obj)
{
struct spi_s *objs = SPI_S(obj);
return (objs->event & objs->available_events);
}
/** Attempts to determine if the SPI peripheral is already in use
*
* If a temporary DMA channel has been allocated, peripheral is in use.
* If a permanent DMA channel has been allocated, check if the DMA channel is in use. If not, proceed as though no DMA
* channel were allocated.
* If no DMA channel is allocated, check whether tx and rx buffers have been assigned. For each assigned buffer, check
* if the corresponding buffer position is less than the buffer length. If buffers do not indicate activity, check if
* there are any bytes in the FIFOs.
* @param[in] obj The SPI object to check for activity
* @return Non-zero if the SPI port is active or zero if it is not.
*/
uint8_t spi_active(spi_t *obj)
{
struct spi_s *objs = SPI_S(obj);
return objs->active;
}
/** Abort an SPI transfer
*
* @param obj The SPI peripheral to stop
*/
void spi_abort_asynch(spi_t *obj)
{
struct spi_s *objs = SPI_S(obj);
*(objs->EUSCI_IE) = 0;
*(objs->EUSCI_IFG) = 0;
objs->active = false;
}
/*************************/
/* SPI interrupt handler */
/*************************/
void handle_SPI_Interrupt(spi_t *obj)
{
struct spi_s *objs = SPI_S(obj);
#if 0
uint16_t ifg = *(objs->EUSCI_IFG);
if (ifg & EUSCI_B_IFG_RXIFG) {
struct buffer_s *rx_buff = &obj->rx_buff;
if (rx_buff->pos < rx_buff->length) {
((uint8_t *)rx_buff->buffer)[rx_buff->pos] = *(objs->EUSCI_RXBUF);
rx_buff->pos++;
}
if (rx_buff->pos >= rx_buff->length) {
// Disable RX interrupts
*(objs->EUSCI_IE) &= ~EUSCI_B_IE_RXIE;
}
}
if (ifg & EUSCI_B_IFG_TXIFG) {
struct buffer_s *tx_buff = &obj->tx_buff;
if (tx_buff->pos < tx_buff->length) {
*(objs->EUSCI_TXBUF) = ((uint8_t *)tx_buff->buffer)[tx_buff->pos];
tx_buff->pos++;
} else {
// Disable interrupts
*(objs->EUSCI_IE) = 0;
objs->active = false;
objs->event = SPI_EVENT_COMPLETE;
objs->handler();
}
}
#endif
uint16_t vector = *(objs->EUSCI_IV);
switch (vector) {
/* UCRXIFG */
case 0x02: {
struct buffer_s *rx_buff = &obj->rx_buff;
if (*(objs->EUSCI_STATW) & EUSCI_B_STATW_OE) {
objs->event = SPI_EVENT_RX_OVERFLOW;
objs->handler();
}
if (rx_buff->pos < rx_buff->length) {
((uint8_t *)rx_buff->buffer)[rx_buff->pos] = *(objs->EUSCI_RXBUF);
rx_buff->pos++;
}
if (rx_buff->pos >= rx_buff->length) {
// Disable RX interrupts
*(objs->EUSCI_IE) &= ~EUSCI_B_IE_RXIE;
}
break;
}
/* UCTXIFG */
case 0x04: {
struct buffer_s *tx_buff = &obj->tx_buff;
if (tx_buff->pos < tx_buff->length) {
*(objs->EUSCI_TXBUF) = ((uint8_t *)tx_buff->buffer)[tx_buff->pos];
tx_buff->pos++;
} else {
// Disable interrupts
*(objs->EUSCI_IE) = 0;
objs->active = false;
objs->event = SPI_EVENT_COMPLETE;
objs->handler();
}
break;
}
}
}
void EUSCIA0_SPI_IRQHandler(void)
{
handle_SPI_Interrupt(spi_objects[0]);
}
void EUSCIA1_SPI_IRQHandler(void)
{
handle_SPI_Interrupt(spi_objects[1]);
}
void EUSCIA2_SPI_IRQHandler(void)
{
handle_SPI_Interrupt(spi_objects[2]);
}
void EUSCIA3_SPI_IRQHandler(void)
{
handle_SPI_Interrupt(spi_objects[3]);
}
void EUSCIB0_SPI_IRQHandler(void)
{
handle_SPI_Interrupt(spi_objects[4]);
}
void EUSCIB1_SPI_IRQHandler(void)
{
handle_SPI_Interrupt(spi_objects[5]);
}
void EUSCIB2_SPI_IRQHandler(void)
{
handle_SPI_Interrupt(spi_objects[6]);
}
void EUSCIB3_SPI_IRQHandler(void)
{
handle_SPI_Interrupt(spi_objects[7]);
}
#endif // DEVICE_SPI_ASYNCH
#endif // DEVICE_SPI