mbed-os/features/FEATURE_COMMON_PAL/nanostack-libservice/source/nsdynmemLIB/nsdynmemLIB.c

402 lines
12 KiB
C

/*
* Copyright (c) 2014-2015 ARM Limited. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <string.h>
#include "nsdynmemLIB.h"
#include "platform/arm_hal_interrupt.h"
#include <stdlib.h>
#include "ns_list.h"
void (*heap_failure_callback)(heap_fail_t);
#ifndef STANDARD_MALLOC
static int *heap_main = 0;
static int *heap_main_end = 0;
static uint16_t heap_size = 0;
typedef enum mem_stat_update_t {
DEV_HEAP_ALLOC_OK,
DEV_HEAP_ALLOC_FAIL,
DEV_HEAP_FREE,
} mem_stat_update_t;
static mem_stat_t *mem_stat_info_ptr = 0;
typedef struct {
ns_list_link_t link;
} hole_t;
static NS_LIST_DEFINE(holes_list, hole_t, link);
// size of a hole_t in our word units
#define HOLE_T_SIZE ((sizeof(hole_t) + sizeof(int) - 1) / sizeof(int))
static NS_INLINE hole_t *hole_from_block_start(int *start)
{
return (hole_t *)(start + 1);
}
static NS_INLINE int *block_start_from_hole(hole_t *start)
{
return ((int *)start) - 1;
}
static void heap_failure(heap_fail_t reason)
{
if (heap_failure_callback) {
heap_failure_callback(reason);
}
}
#endif
void ns_dyn_mem_init(uint8_t *heap, uint16_t h_size, void (*passed_fptr)(heap_fail_t), mem_stat_t *info_ptr)
{
#ifndef STANDARD_MALLOC
int *ptr;
int temp_int;
/* Do memory alignment */
temp_int = ((uintptr_t)heap % sizeof(int));
if (temp_int) {
heap += (sizeof(int) - temp_int);
h_size -= (sizeof(int) - temp_int);
}
/* Make correction for total length also */
temp_int = (h_size % sizeof(int));
if (temp_int) {
h_size -= (sizeof(int) - temp_int);
}
heap_main = (int *)heap; // SET Heap Pointer
heap_size = h_size; //Set Heap Size
temp_int = (h_size / sizeof(int));
temp_int -= 2;
ptr = heap_main;
*ptr = -(temp_int);
ptr += (temp_int + 1);
*ptr = -(temp_int);
heap_main_end = ptr;
ns_list_init(&holes_list);
ns_list_add_to_start(&holes_list, hole_from_block_start(heap_main));
//RESET Memory by Hea Len
if (info_ptr) {
mem_stat_info_ptr = info_ptr;
memset(mem_stat_info_ptr, 0, sizeof(mem_stat_t));
mem_stat_info_ptr->heap_sector_size = heap_size;
}
#endif
heap_failure_callback = passed_fptr;
}
const mem_stat_t *ns_dyn_mem_get_mem_stat(void)
{
#ifndef STANDARD_MALLOC
return mem_stat_info_ptr;
#else
return NULL;
#endif
}
#ifndef STANDARD_MALLOC
void dev_stat_update(mem_stat_update_t type, int16_t size)
{
if (mem_stat_info_ptr) {
switch (type) {
case DEV_HEAP_ALLOC_OK:
mem_stat_info_ptr->heap_sector_alloc_cnt++;
mem_stat_info_ptr->heap_sector_allocated_bytes += size;
if (mem_stat_info_ptr->heap_sector_allocated_bytes_max < mem_stat_info_ptr->heap_sector_allocated_bytes) {
mem_stat_info_ptr->heap_sector_allocated_bytes_max = mem_stat_info_ptr->heap_sector_allocated_bytes;
}
mem_stat_info_ptr->heap_alloc_total_bytes += size;
break;
case DEV_HEAP_ALLOC_FAIL:
mem_stat_info_ptr->heap_alloc_fail_cnt++;
break;
case DEV_HEAP_FREE:
mem_stat_info_ptr->heap_sector_alloc_cnt--;
mem_stat_info_ptr->heap_sector_allocated_bytes -= size;
break;
}
}
}
static int convert_allocation_size(int16_t requested_bytes)
{
if (heap_main == 0) {
heap_failure(NS_DYN_MEM_HEAP_SECTOR_UNITIALIZED);
} else if (requested_bytes < 1) {
heap_failure(NS_DYN_MEM_ALLOCATE_SIZE_NOT_VALID);
} else if (requested_bytes > (heap_size - 2 * sizeof(int)) ) {
heap_failure(NS_DYN_MEM_ALLOCATE_SIZE_NOT_VALID);
}
return (requested_bytes + sizeof(int) - 1) / sizeof(int);
}
// Checks that block length indicators are valid
// Block has format: Size of data area [1 word] | data area [abs(size) words]| Size of data area [1 word]
// If Size is negative it means area is unallocated
// For direction, use 1 for direction up and -1 for down
static int8_t ns_block_validate(int *block_start, int direction)
{
int8_t ret_val = -1;
int *end = block_start;
int size_start = *end;
end += (1 + abs(size_start));
if (size_start != 0 && size_start == *end) {
ret_val = 0;
}
return ret_val;
}
#endif
// For direction, use 1 for direction up and -1 for down
static void *ns_dyn_mem_internal_alloc(const int16_t alloc_size, int direction)
{
#ifndef STANDARD_MALLOC
int *block_ptr = NULL;
platform_enter_critical();
int data_size = convert_allocation_size(alloc_size);
if (!data_size) {
goto done;
}
// ns_list_foreach, either forwards or backwards, result to ptr
for (hole_t *cur_hole = direction > 0 ? ns_list_get_first(&holes_list)
: ns_list_get_last(&holes_list);
cur_hole;
cur_hole = direction > 0 ? ns_list_get_next(&holes_list, cur_hole)
: ns_list_get_previous(&holes_list, cur_hole)
) {
int *p = block_start_from_hole(cur_hole);
if (ns_block_validate(p, direction) != 0 || *p >= 0) {
//Validation failed, or this supposed hole has positive (allocated) size
heap_failure(NS_DYN_MEM_HEAP_SECTOR_CORRUPTED);
break;
}
if (-*p >= data_size) {
// Found a big enough block
block_ptr = p;
break;
}
}
if (!block_ptr) {
goto done;
}
int block_data_size = -*block_ptr;
if (block_data_size >= (data_size + 2 + HOLE_T_SIZE)) {
int hole_size = block_data_size - data_size - 2;
int *hole_ptr;
//There is enough room for a new hole so create it first
if ( direction > 0 ) {
hole_ptr = block_ptr + 1 + data_size + 1;
// Hole will be left at end of area.
// Would like to just replace this block_ptr with new descriptor, but
// they could overlap, so ns_list_replace might fail
//ns_list_replace(&holes_list, block_ptr, hole_from_block_start(hole_ptr));
hole_t *before = ns_list_get_previous(&holes_list, hole_from_block_start(block_ptr));
ns_list_remove(&holes_list, hole_from_block_start(block_ptr));
if (before) {
ns_list_add_after(&holes_list, before, hole_from_block_start(hole_ptr));
} else {
ns_list_add_to_start(&holes_list, hole_from_block_start(hole_ptr));
}
} else {
hole_ptr = block_ptr;
// Hole remains at start of area - keep existing descriptor in place.
block_ptr += 1 + hole_size + 1;
}
hole_ptr[0] = -hole_size;
hole_ptr[1 + hole_size] = -hole_size;
} else {
// Not enough room for a left-over hole, so use the whole block
data_size = block_data_size;
ns_list_remove(&holes_list, hole_from_block_start(block_ptr));
}
block_ptr[0] = data_size;
block_ptr[1 + data_size] = data_size;
done:
if (mem_stat_info_ptr) {
if (block_ptr) {
//Update Allocate OK
dev_stat_update(DEV_HEAP_ALLOC_OK, (data_size + 2) * sizeof(int));
} else {
//Update Allocate Fail, second parameter is not used for stats
dev_stat_update(DEV_HEAP_ALLOC_FAIL, 0);
}
}
platform_exit_critical();
return block_ptr ? block_ptr + 1 : NULL;
#else
void *retval = NULL;
if (alloc_size) {
platform_enter_critical();
retval = malloc(alloc_size);
platform_exit_critical();
}
return retval;
#endif
}
void *ns_dyn_mem_alloc(int16_t alloc_size)
{
return ns_dyn_mem_internal_alloc(alloc_size, -1);
}
void *ns_dyn_mem_temporary_alloc(int16_t alloc_size)
{
return ns_dyn_mem_internal_alloc(alloc_size, 1);
}
#ifndef STANDARD_MALLOC
static void ns_free_and_merge_with_adjacent_blocks(int *cur_block, int data_size)
{
// Theory of operation: Block is always in form | Len | Data | Len |
// So we need to check length of previous (if current not heap start)
// and next (if current not heap end) blocks. Negative length means
// free memory so we can merge freed block with those.
hole_t *existing_start = NULL;
hole_t *existing_end = NULL;
int *start = cur_block;
int *end = cur_block + data_size + 1;
//invalidate current block
*cur_block = -data_size;
*end = -data_size;
int merged_data_size = data_size;
if (cur_block != heap_main) {
cur_block--;
if (*cur_block < 0) {
merged_data_size += (2 - *cur_block);
start -= (2 - *cur_block);
if (-*start >= HOLE_T_SIZE) {
existing_start = hole_from_block_start(start);
}
}
cur_block++;
}
if (end != heap_main_end) {
end++;
if (*end < 0) {
merged_data_size += (2 - *end);
if (-*end >= HOLE_T_SIZE) {
existing_end = hole_from_block_start(end);
}
end += (1 - *end);
}else{
end--;
}
}
hole_t *to_add = hole_from_block_start(start);
hole_t *before = NULL;
if (existing_end) {
// Extending hole described by "existing_end" downwards.
// Will replace with descriptor at bottom of merged block.
// (Can't use ns_list_replace, because of danger of overlap)
// Optimisation - note our position for insertion below.
before = ns_list_get_next(&holes_list, existing_end);
ns_list_remove(&holes_list, existing_end);
}
if (existing_start) {
// Extending hole described by "existing_start" upwards.
// No need to modify that descriptor - it remains at the bottom
// of the merged block to describe it.
} else {
// Didn't find adjacent descriptors, but may still
// be merging with small blocks without descriptors.
if ( merged_data_size >= HOLE_T_SIZE ) {
// Locate hole position in list, if we don't already know
// from merging with the block above.
if (!existing_end) {
ns_list_foreach(hole_t, ptr, &holes_list) {
if (ptr > to_add) {
before = ptr;
break;
}
}
}
if (before) {
ns_list_add_before(&holes_list, before, to_add);
} else {
ns_list_add_to_end(&holes_list, to_add);
}
}
}
*start = -merged_data_size;
*end = -merged_data_size;
}
#endif
void ns_dyn_mem_free(void *block)
{
#ifndef STANDARD_MALLOC
int *ptr = block;
int size;
if (!block) {
return;
}
if (!heap_main) {
heap_failure(NS_DYN_MEM_HEAP_SECTOR_UNITIALIZED);
return;
}
platform_enter_critical();
ptr --;
//Read Current Size
size = *ptr;
if (size < 0) {
heap_failure(NS_DYN_MEM_DOUBLE_FREE);
} else if (ptr < heap_main || ptr >= heap_main_end) {
heap_failure(NS_DYN_MEM_POINTER_NOT_VALID);
} else if ((ptr + size) >= heap_main_end) {
heap_failure(NS_DYN_MEM_POINTER_NOT_VALID);
} else {
if (ns_block_validate(ptr, 1) != 0) {
heap_failure(NS_DYN_MEM_HEAP_SECTOR_CORRUPTED);
} else {
ns_free_and_merge_with_adjacent_blocks(ptr, size);
if (mem_stat_info_ptr) {
//Update Free Counter
dev_stat_update(DEV_HEAP_FREE, (size + 2) * sizeof(int));
}
}
}
platform_exit_critical();
#else
platform_enter_critical();
free(block);
platform_exit_critical();
#endif
}