mbed-os/components/storage/blockdevice/COMPONENT_QSPIF/QSPIFBlockDevice.cpp

1742 lines
67 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "QSPIFBlockDevice.h"
#include <string.h>
#include "rtos/ThisThread.h"
#ifndef MBED_CONF_MBED_TRACE_ENABLE
#define MBED_CONF_MBED_TRACE_ENABLE 0
#endif
#include "mbed_trace.h"
#define TRACE_GROUP "QSPIF"
using namespace mbed;
/* Default QSPIF Parameters */
/****************************/
#define QSPIF_DEFAULT_PAGE_SIZE 256
#define QSPIF_DEFAULT_SE_SIZE 4096
// The SFDP spec only defines two status registers. But some devices,
// have three "status-like" registers (one status, two config)
#define QSPI_MAX_STATUS_REGISTERS 3
#define QSPI_DEFAULT_STATUS_REGISTERS 2
#ifndef UINT64_MAX
#define UINT64_MAX -1
#endif
#define QSPI_NO_ADDRESS_COMMAND UINT64_MAX
#define QSPI_ALT_DEFAULT_VALUE 0
// Status Register Bits
#define QSPIF_STATUS_BIT_WIP 0x1 // Write In Progress
#define QSPIF_STATUS_BIT_WEL 0x2 // Write Enable Latch
#define QSPIF_NO_QUAD_ENABLE (-1)
/* SFDP Header Parsing */
/***********************/
#define QSPIF_RSFDP_DUMMY_CYCLES 8
#define QSPIF_SFDP_HEADER_SIZE 8
#define QSPIF_PARAM_HEADER_SIZE 8
/* Basic Parameters Table Parsing */
/**********************************/
#define SFDP_DEFAULT_BASIC_PARAMS_TABLE_SIZE_BYTES 64 /* 16 DWORDS */
//READ Instruction support according to BUS Configuration
#define QSPIF_BASIC_PARAM_TABLE_FAST_READ_SUPPORT_BYTE 2
#define QSPIF_BASIC_PARAM_TABLE_QPI_READ_SUPPORT_BYTE 16
#define QSPIF_BASIC_PARAM_TABLE_444_READ_INST_BYTE 27
#define QSPIF_BASIC_PARAM_TABLE_144_READ_INST_BYTE 9
#define QSPIF_BASIC_PARAM_TABLE_114_READ_INST_BYTE 11
#define QSPIF_BASIC_PARAM_TABLE_222_READ_INST_BYTE 23
#define QSPIF_BASIC_PARAM_TABLE_122_READ_INST_BYTE 15
#define QSPIF_BASIC_PARAM_TABLE_112_READ_INST_BYTE 13
#define QSPIF_BASIC_PARAM_TABLE_PAGE_SIZE_BYTE 40
// Quad Enable Params
#define QSPIF_BASIC_PARAM_TABLE_QER_BYTE 58
#define QSPIF_BASIC_PARAM_TABLE_444_MODE_EN_SEQ_BYTE 56
// Erase Types Params
#define QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_1_BYTE 29
#define QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_2_BYTE 31
#define QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_3_BYTE 33
#define QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_4_BYTE 35
#define QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_1_SIZE_BYTE 28
#define QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_2_SIZE_BYTE 30
#define QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_3_SIZE_BYTE 32
#define QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_4_SIZE_BYTE 34
#define QSPIF_BASIC_PARAM_4K_ERASE_TYPE_BYTE 1
#define QSPIF_BASIC_PARAM_TABLE_SOFT_RESET_BYTE 61
#define QSPIF_BASIC_PARAM_TABLE_4BYTE_ADDR_BYTE 63
#define SOFT_RESET_RESET_INST_BITMASK 0b001000
#define SOFT_RESET_ENABLE_AND_RESET_INST_BITMASK 0b010000
// Erase Types Per Region BitMask
#define ERASE_BITMASK_TYPE4 0x08
#define ERASE_BITMASK_TYPE1 0x01
#define ERASE_BITMASK_NONE 0x00
#define ERASE_BITMASK_ALL 0x0F
// 4-Byte Addressing Support Bitmasks
#define FOURBYTE_ADDR_B7_BITMASK 0b00000001
#define FOURBYTE_ADDR_B7_WREN_BITMASK 0b00000010
#define FOURBYTE_ADDR_EXT_ADDR_REG_BITMASK 0b00000100
#define FOURBYTE_ADDR_BANK_REG_BITMASK 0b00001000
#define FOURBYTE_ADDR_CONF_REG_BITMASK 0b00010000
#define FOURBYTE_ADDR_INSTS_BITMASK 0b00100000
#define FOURBYTE_ADDR_ALWAYS_BITMASK 0b01000000
#define IS_MEM_READY_MAX_RETRIES 10000
// General QSPI instructions
#define QSPIF_INST_WSR1 0x01 // Write status register 1
#define QSPIF_INST_PROG 0x02 // Page program
#define QSPIF_INST_WRDI 0x04 // Write disable
#define QSPIF_INST_RSR1 0x05 // Read status register 1
#define QSPIF_INST_WREN 0x06 // Write enable
#define QSPIF_INST_RSFDP 0x5A // Read SFDP
#define QSPIF_INST_RDID 0x9F // Read Manufacturer and JDEC Device ID
// Device-specific instructions
#define QSPIF_INST_ULBPR 0x98 // Clear all write-protection bits in the Block-Protection register
#define QSPIF_INST_RDCR 0x15 // Read the two control registers
// Default read/legacy erase instructions
#define QSPIF_INST_READ_DEFAULT 0x03
#define QSPIF_INST_LEGACY_ERASE_DEFAULT QSPI_NO_INST
// Default status register 2 read/write instructions
#define QSPIF_INST_WSR2_DEFAULT QSPI_NO_INST
#define QSPIF_INST_RSR2_DEFAULT 0x35
// Default 4-byte extended addressing register write instruction
#define QSPIF_INST_4BYTE_REG_WRITE_DEFAULT QSPI_NO_INST
// Length of data returned from RDID instruction
#define QSPI_RDID_DATA_LENGTH 3
/* Init function to initialize Different Devices CS static list */
static PinName *generate_initialized_active_qspif_csel_arr();
// Static Members for different devices csel
// _devices_mutex is used to lock csel list - only one QSPIFBlockDevice instance per csel is allowed
SingletonPtr<PlatformMutex> QSPIFBlockDevice::_devices_mutex;
int QSPIFBlockDevice::_number_of_active_qspif_flash_csel = 0;
PinName *QSPIFBlockDevice::_active_qspif_flash_csel_arr = generate_initialized_active_qspif_csel_arr();
/********* Public API Functions *********/
/****************************************/
QSPIFBlockDevice::QSPIFBlockDevice(PinName io0, PinName io1, PinName io2, PinName io3, PinName sclk, PinName csel,
int clock_mode, int freq)
: _qspi(io0, io1, io2, io3, sclk, csel, clock_mode), _csel(csel), _freq(freq), _device_size_bytes(0),
_init_ref_count(0),
_is_initialized(false)
{
_unique_device_status = add_new_csel_instance(csel);
if (_unique_device_status == 0) {
tr_debug("Adding a new QSPIFBlockDevice csel: %d", (int)csel);
} else if (_unique_device_status == -1) {
tr_error("QSPIFBlockDevice with the same csel(%d) already exists", (int)csel);
} else {
tr_error("Too many different QSPIFBlockDevice devices - max allowed: %d", QSPIF_MAX_ACTIVE_FLASH_DEVICES);
}
// Initialize parameters
_min_common_erase_size = 0;
_regions_count = 1;
_region_erase_types_bitfield[0] = ERASE_BITMASK_NONE;
// Until proven otherwise, assume no quad enable
_quad_enable_register_idx = QSPIF_NO_QUAD_ENABLE;
_quad_enable_bit = QSPIF_NO_QUAD_ENABLE;
// Default Bus Setup 1_1_1 with 0 dummy and mode cycles
_inst_width = QSPI_CFG_BUS_SINGLE;
_address_width = QSPI_CFG_BUS_SINGLE;
_address_size = QSPI_CFG_ADDR_SIZE_24;
_alt_size = 0;
_dummy_cycles = 0;
_data_width = QSPI_CFG_BUS_SINGLE;
// Set default read/erase instructions
_read_instruction = QSPIF_INST_READ_DEFAULT;
_legacy_erase_instruction = QSPIF_INST_LEGACY_ERASE_DEFAULT;
_num_status_registers = QSPI_DEFAULT_STATUS_REGISTERS;
// Set default status register 2 write/read instructions
_write_status_reg_2_inst = QSPIF_INST_WSR2_DEFAULT;
_read_status_reg_2_inst = QSPIF_INST_RSR2_DEFAULT;
_clear_protection_method = QSPIF_BP_CLEAR_SR;
// Set default 4-byte addressing extension register write instruction
_4byte_msb_reg_write_inst = QSPIF_INST_4BYTE_REG_WRITE_DEFAULT;
}
int QSPIFBlockDevice::init()
{
if (_unique_device_status == 0) {
tr_debug("QSPIFBlockDevice csel: %d", (int)_csel);
} else if (_unique_device_status == -1) {
tr_error("QSPIFBlockDevice with the same csel(%d) already exists", (int)_csel);
return QSPIF_BD_ERROR_DEVICE_NOT_UNIQUE;
} else {
tr_error("Too many different QSPIFBlockDevice devices - max allowed: %d", QSPIF_MAX_ACTIVE_FLASH_DEVICES);
return QSPIF_BD_ERROR_DEVICE_MAX_EXCEED;
}
int status = QSPIF_BD_ERROR_OK;
uint32_t basic_table_addr = 0;
size_t basic_table_size = 0;
uint32_t sector_map_table_addr = 0;
size_t sector_map_table_size = 0;
_mutex.lock();
// All commands other than Read and RSFDP use default 1-1-1 bus mode (Program/Erase are constrained by flash memory performance more than bus performance)
if (QSPI_STATUS_OK != _qspi.configure_format(QSPI_CFG_BUS_SINGLE, QSPI_CFG_BUS_SINGLE, _address_size, QSPI_CFG_BUS_SINGLE,
0, QSPI_CFG_BUS_SINGLE, 0)) {
tr_error("_qspi_configure_format failed");
status = QSPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
if (!_is_initialized) {
_init_ref_count = 0;
}
_init_ref_count++;
if (_init_ref_count != 1) {
goto exit_point;
}
_alt_size = 0;
_dummy_cycles = 0;
if (QSPI_STATUS_OK != _qspi_set_frequency(_freq)) {
tr_error("QSPI Set Frequency Failed");
status = QSPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
// Synchronize Device
if (false == _is_mem_ready()) {
tr_error("Init - _is_mem_ready Failed");
status = QSPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
if (0 != _handle_vendor_quirks()) {
tr_error("Init - Could not read vendor id");
status = QSPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
/**************************** Parse SFDP Header ***********************************/
if (0 != _sfdp_parse_sfdp_headers(basic_table_addr, basic_table_size, sector_map_table_addr, sector_map_table_size)) {
tr_error("Init - Parse SFDP Headers Failed");
status = QSPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
/**************************** Parse Basic Parameters Table ***********************************/
if (0 != _sfdp_parse_basic_param_table(basic_table_addr, basic_table_size)) {
tr_error("Init - Parse Basic Param Table Failed");
status = QSPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
/**************************** Parse Sector Map Table ***********************************/
_region_size_bytes[0] =
_device_size_bytes; // If there's no region map, we have a single region sized the entire device size
_region_high_boundary[0] = _device_size_bytes - 1;
if ((sector_map_table_addr != 0) && (0 != sector_map_table_size)) {
tr_debug("Init - Parsing Sector Map Table - addr: 0x%lxh, Size: %d", sector_map_table_addr,
sector_map_table_size);
if (0 != _sfdp_parse_sector_map_table(sector_map_table_addr, sector_map_table_size)) {
tr_error("Init - Parse Sector Map Table Failed");
status = QSPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
}
if (0 != _clear_block_protection()) {
tr_error("Init - clearing block protection failed");
status = QSPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
_is_initialized = true;
exit_point:
_mutex.unlock();
return status;
}
int QSPIFBlockDevice::deinit()
{
int result = QSPIF_BD_ERROR_OK;
_mutex.lock();
if (!_is_initialized) {
_init_ref_count = 0;
_mutex.unlock();
return result;
}
_init_ref_count--;
if (_init_ref_count) {
_mutex.unlock();
return result;
}
// Disable Device for Writing
qspi_status_t status = _qspi_send_general_command(QSPIF_INST_WRDI, QSPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0);
if (status != QSPI_STATUS_OK) {
tr_error("Write Disable failed");
result = QSPIF_BD_ERROR_DEVICE_ERROR;
}
_is_initialized = false;
_mutex.unlock();
if (_unique_device_status == 0) {
remove_csel_instance(_csel);
}
return result;
}
int QSPIFBlockDevice::read(void *buffer, bd_addr_t addr, bd_size_t size)
{
int status = QSPIF_BD_ERROR_OK;
tr_debug("Read Inst: 0x%xh", _read_instruction);
_mutex.lock();
if (QSPI_STATUS_OK != _qspi_send_read_command(_read_instruction, buffer, addr, size)) {
tr_error("Read Command failed");
status = QSPIF_BD_ERROR_DEVICE_ERROR;
}
_mutex.unlock();
return status;
}
int QSPIFBlockDevice::program(const void *buffer, bd_addr_t addr, bd_size_t size)
{
qspi_status_t result = QSPI_STATUS_OK;
bool program_failed = false;
int status = QSPIF_BD_ERROR_OK;
uint32_t offset = 0;
uint32_t chunk = 0;
bd_size_t written_bytes = 0;
tr_debug("Program - Buff: 0x%lxh, addr: %llu, size: %llu", (uint32_t)buffer, addr, size);
while (size > 0) {
// Write on _page_size_bytes boundaries (Default 256 bytes a page)
offset = addr % _page_size_bytes;
chunk = (offset + size < _page_size_bytes) ? size : (_page_size_bytes - offset);
written_bytes = chunk;
_mutex.lock();
//Send WREN
if (_set_write_enable() != 0) {
tr_error("Write Enabe failed");
program_failed = true;
status = QSPIF_BD_ERROR_WREN_FAILED;
goto exit_point;
}
result = _qspi_send_program_command(QSPIF_INST_PROG, buffer, addr, &written_bytes);
if ((result != QSPI_STATUS_OK) || (chunk != written_bytes)) {
tr_error("Write failed");
program_failed = true;
status = QSPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
buffer = static_cast<const uint8_t *>(buffer) + chunk;
addr += chunk;
size -= chunk;
if (false == _is_mem_ready()) {
tr_error("Device not ready after write, failed");
program_failed = true;
status = QSPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_mutex.unlock();
}
exit_point:
if (program_failed) {
_mutex.unlock();
}
return status;
}
int QSPIFBlockDevice::erase(bd_addr_t addr, bd_size_t in_size)
{
int type = 0;
uint32_t offset = 0;
uint32_t chunk = 4096;
qspi_inst_t cur_erase_inst = QSPI_NO_INST;
int size = (int)in_size;
bool erase_failed = false;
int status = QSPIF_BD_ERROR_OK;
// Find region of erased address
int region = _utils_find_addr_region(addr);
// Erase Types of selected region
uint8_t bitfield = _region_erase_types_bitfield[region];
tr_debug("Erase - addr: %llu, in_size: %llu", addr, in_size);
if ((addr + in_size) > _device_size_bytes) {
tr_error("Erase exceeds flash device size");
return QSPIF_BD_ERROR_INVALID_ERASE_PARAMS;
}
if (((addr % get_erase_size(addr)) != 0) || (((addr + in_size) % get_erase_size(addr + in_size - 1)) != 0)) {
tr_error("Invalid erase - unaligned address and size");
return QSPIF_BD_ERROR_INVALID_ERASE_PARAMS;
}
// For each iteration erase the largest section supported by current region
while (size > 0) {
unsigned int eu_size;
if (_legacy_erase_instruction == QSPI_NO_INST) {
// Iterate to find next largest erase type that is a) supported by region, and b) smaller than size.
// Find the matching instruction and erase size chunk for that type.
type = _utils_iterate_next_largest_erase_type(bitfield, size, (int)addr, _region_high_boundary[region]);
cur_erase_inst = _erase_type_inst_arr[type];
eu_size = _erase_type_size_arr[type];
} else {
// Must use legacy 4k erase instruction
cur_erase_inst = _legacy_erase_instruction;
eu_size = QSPIF_DEFAULT_SE_SIZE;
}
offset = addr % eu_size;
chunk = ((offset + size) < eu_size) ? size : (eu_size - offset);
tr_debug("Erase - addr: %llu, size:%d, Inst: 0x%xh, chunk: %lu ",
addr, size, cur_erase_inst, chunk);
tr_debug("Erase - Region: %d, Type:%d ",
region, type);
_mutex.lock();
if (_set_write_enable() != 0) {
tr_error("QSPI Erase Device not ready - failed");
erase_failed = true;
status = QSPIF_BD_ERROR_WREN_FAILED;
goto exit_point;
}
if (QSPI_STATUS_OK != _qspi_send_erase_command(cur_erase_inst, addr, size)) {
tr_error("QSPI Erase command failed!");
erase_failed = true;
status = QSPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
addr += chunk;
size -= chunk;
if ((size > 0) && (addr > _region_high_boundary[region])) {
// erase crossed to next region
region++;
bitfield = _region_erase_types_bitfield[region];
}
if (false == _is_mem_ready()) {
tr_error("QSPI After Erase Device not ready - failed");
erase_failed = true;
status = QSPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_mutex.unlock();
}
exit_point:
if (erase_failed) {
_mutex.unlock();
}
return status;
}
bd_size_t QSPIFBlockDevice::get_read_size() const
{
// Return minimum read size in bytes for the device
return MBED_CONF_QSPIF_QSPI_MIN_READ_SIZE;
}
bd_size_t QSPIFBlockDevice::get_program_size() const
{
// Return minimum program/write size in bytes for the device
return MBED_CONF_QSPIF_QSPI_MIN_PROG_SIZE;
}
bd_size_t QSPIFBlockDevice::get_erase_size() const
{
// return minimal erase size supported by all regions (0 if none exists)
return _min_common_erase_size;
}
const char *QSPIFBlockDevice::get_type() const
{
return "QSPIF";
}
// Find minimal erase size supported by the region to which the address belongs to
bd_size_t QSPIFBlockDevice::get_erase_size(bd_addr_t addr)
{
// If the legacy erase instruction is in use, the erase size is uniformly 4k
if (_legacy_erase_instruction != QSPI_NO_INST) {
return QSPIF_DEFAULT_SE_SIZE;
}
// Find region of current address
int region = _utils_find_addr_region(addr);
int min_region_erase_size = _min_common_erase_size;
int8_t type_mask = ERASE_BITMASK_TYPE1;
int i_ind = 0;
if (region != -1) {
type_mask = 0x01;
for (i_ind = 0; i_ind < 4; i_ind++) {
// loop through erase types bitfield supported by region
if (_region_erase_types_bitfield[region] & type_mask) {
min_region_erase_size = _erase_type_size_arr[i_ind];
break;
}
type_mask = type_mask << 1;
}
if (i_ind == 4) {
tr_error("No erase type was found for region addr");
}
}
return (bd_size_t)min_region_erase_size;
}
bd_size_t QSPIFBlockDevice::size() const
{
return _device_size_bytes;
}
int QSPIFBlockDevice::get_erase_value() const
{
return 0xFF;
}
/********************************/
/* Different Device Csel Mgmt */
/********************************/
static PinName *generate_initialized_active_qspif_csel_arr()
{
PinName *init_arr = new PinName[QSPIF_MAX_ACTIVE_FLASH_DEVICES];
for (int i_ind = 0; i_ind < QSPIF_MAX_ACTIVE_FLASH_DEVICES; i_ind++) {
init_arr[i_ind] = NC;
}
return init_arr;
}
int QSPIFBlockDevice::add_new_csel_instance(PinName csel)
{
int status = 0;
_devices_mutex->lock();
if (_number_of_active_qspif_flash_csel >= QSPIF_MAX_ACTIVE_FLASH_DEVICES) {
status = -2;
goto exit_point;
}
// verify the device is unique(no identical csel already exists)
for (int i_ind = 0; i_ind < QSPIF_MAX_ACTIVE_FLASH_DEVICES; i_ind++) {
if (_active_qspif_flash_csel_arr[i_ind] == csel) {
status = -1;
goto exit_point;
}
}
// Insert new csel into existing device list
for (int i_ind = 0; i_ind < QSPIF_MAX_ACTIVE_FLASH_DEVICES; i_ind++) {
if (_active_qspif_flash_csel_arr[i_ind] == NC) {
_active_qspif_flash_csel_arr[i_ind] = csel;
break;
}
}
_number_of_active_qspif_flash_csel++;
exit_point:
_devices_mutex->unlock();
return status;
}
int QSPIFBlockDevice::remove_csel_instance(PinName csel)
{
int status = -1;
_devices_mutex->lock();
// remove the csel from existing device list
for (int i_ind = 0; i_ind < QSPIF_MAX_ACTIVE_FLASH_DEVICES; i_ind++) {
if (_active_qspif_flash_csel_arr[i_ind] == csel) {
_active_qspif_flash_csel_arr[i_ind] = NC;
if (_number_of_active_qspif_flash_csel > 0) {
_number_of_active_qspif_flash_csel--;
}
status = 0;
break;
}
}
_devices_mutex->unlock();
return status;
}
/*********************************************************/
/********** SFDP Parsing and Detection Functions *********/
/*********************************************************/
int QSPIFBlockDevice::_sfdp_parse_sfdp_headers(uint32_t &basic_table_addr, size_t &basic_table_size,
uint32_t &sector_map_table_addr, size_t &sector_map_table_size)
{
uint8_t sfdp_header[QSPIF_SFDP_HEADER_SIZE];
uint8_t param_header[QSPIF_PARAM_HEADER_SIZE];
size_t data_length = QSPIF_SFDP_HEADER_SIZE;
bd_addr_t addr = 0x0;
qspi_status_t status = _qspi_send_read_sfdp_command(addr, (char *) sfdp_header, data_length);
if (status != QSPI_STATUS_OK) {
tr_error("Init - Read SFDP Failed");
return -1;
}
// Verify SFDP signature for sanity
// Also check that major/minor version is acceptable
if (!(memcmp(&sfdp_header[0], "SFDP", 4) == 0 && sfdp_header[5] == 1)) {
tr_error("Init - Verification of SFDP signature and version failed");
return -1;
} else {
tr_debug("Init - Verification of SFDP signature and version succeeded");
}
// Discover Number of Parameter Headers
int number_of_param_headers = (int)(sfdp_header[6]) + 1;
tr_debug("Number of Param Headers: %d", number_of_param_headers);
addr += QSPIF_SFDP_HEADER_SIZE;
data_length = QSPIF_PARAM_HEADER_SIZE;
// Loop over Param Headers and parse them (currently supports Basic Param Table and Sector Region Map Table)
for (int i_ind = 0; i_ind < number_of_param_headers; i_ind++) {
status = _qspi_send_read_sfdp_command(addr, (char *) param_header, data_length);
if (status != QSPI_STATUS_OK) {
tr_error("Init - Read Param Table %d Failed", i_ind + 1);
return -1;
}
// The SFDP spec indicates the standard table is always at offset 0
// in the parameter headers, we check just to be safe
if (param_header[2] != 1) {
tr_error("Param Table %d - Major Version should be 1!", i_ind + 1);
return -1;
}
if ((param_header[0] == 0) && (param_header[7] == 0xFF)) {
// Found Basic Params Table: LSB=0x00, MSB=0xFF
tr_debug("Found Basic Param Table at Table: %d", i_ind + 1);
basic_table_addr = ((param_header[6] << 16) | (param_header[5] << 8) | (param_header[4]));
// Supporting up to 64 Bytes Table (16 DWORDS)
basic_table_size = ((param_header[3] * 4) < SFDP_DEFAULT_BASIC_PARAMS_TABLE_SIZE_BYTES) ? (param_header[3] * 4) : 64;
} else if ((param_header[0] == 81) && (param_header[7] == 0xFF)) {
// Found Sector Map Table: LSB=0x81, MSB=0xFF
tr_debug("Found Sector Map Table at Table: %d", i_ind + 1);
sector_map_table_addr = ((param_header[6] << 16) | (param_header[5] << 8) | (param_header[4]));
sector_map_table_size = param_header[3] * 4;
}
addr += QSPIF_PARAM_HEADER_SIZE;
}
return 0;
}
int QSPIFBlockDevice::_sfdp_parse_basic_param_table(uint32_t basic_table_addr, size_t basic_table_size)
{
uint8_t param_table[SFDP_DEFAULT_BASIC_PARAMS_TABLE_SIZE_BYTES]; /* Up To 16 DWORDS = 64 Bytes */
qspi_status_t status = _qspi_send_read_sfdp_command(basic_table_addr, (char *) param_table, basic_table_size);
if (status != QSPI_STATUS_OK) {
tr_error("Init - Read SFDP First Table Failed");
return -1;
}
// Check that density is not greater than 4 gigabits (i.e. that addressing beyond 4 bytes is not required)
if ((param_table[7] & 0x80) != 0) {
tr_error("Init - verify flash density failed");
return -1;
}
// Get device density (stored in bits - 1)
uint32_t density_bits = ((param_table[7] << 24) |
(param_table[6] << 16) |
(param_table[5] << 8) |
param_table[4]);
_device_size_bytes = (density_bits + 1) / 8;
// Set Page Size (QSPI write must be done on Page limits)
_page_size_bytes = _sfdp_detect_page_size(param_table, basic_table_size);
if (_sfdp_detect_reset_protocol_and_reset(param_table) != QSPIF_BD_ERROR_OK) {
tr_error("Init - Detecting reset protocol/resetting failed");
return -1;
}
// Detect and Set Erase Types
bool shouldSetQuadEnable = false;
bool is_qpi_mode = false;
if (_sfdp_detect_erase_types_inst_and_size(param_table, basic_table_size) != 0) {
tr_error("Init - Detecting erase types instructions/sizes failed");
return -1;
}
// Detect and Set fastest Bus mode (default 1-1-1)
_sfdp_detect_best_bus_read_mode(param_table, basic_table_size, shouldSetQuadEnable, is_qpi_mode);
if (true == shouldSetQuadEnable) {
_enable_fast_mode();
// Set Quad Enable and QPI Bus modes if Supported
tr_debug("Init - Setting Quad Enable");
if (0 != _sfdp_set_quad_enabled(param_table)) {
tr_error("Device supports Quad bus, but Quad Enable Failed");
return -1;
}
if (true == is_qpi_mode) {
tr_debug("Init - Setting QPI mode");
_sfdp_set_qpi_enabled(param_table);
}
}
if (_sfdp_detect_and_enable_4byte_addressing(param_table, basic_table_size) != QSPIF_BD_ERROR_OK) {
tr_error("Init - Detecting/enabling 4-byte addressing failed");
return -1;
}
if (false == _is_mem_ready()) {
tr_error("Init - _is_mem_ready Failed");
return -1;
}
return 0;
}
int QSPIFBlockDevice::_sfdp_set_quad_enabled(uint8_t *basic_param_table_ptr)
{
uint8_t status_reg_setup[QSPI_MAX_STATUS_REGISTERS] = {0};
uint8_t status_regs[QSPI_MAX_STATUS_REGISTERS] = {0};
// QUAD Enable procedure is specified by 3 bits
uint8_t qer_value = (basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_QER_BYTE] & 0x70) >> 4;
switch (qer_value) {
case 0:
tr_debug("Device Does not Have a QE Bit, continue based on Read Inst");
return 0;
case 1:
case 4:
// Bit 1 of Status Reg 2
_quad_enable_register_idx = 1;
_quad_enable_bit = 1;
tr_debug("Setting QE Bit, Bit 1 of Status Reg 2");
break;
case 2:
// Bit 6 of Status Reg 1
_quad_enable_register_idx = 0;
_quad_enable_bit = 6;
tr_debug("Setting QE Bit, Bit 6 of Status Reg 1");
break;
case 3:
// Bit 7 of Status Reg 1
_quad_enable_register_idx = 0;
_quad_enable_bit = 7;
_write_status_reg_2_inst = 0x3E;
_read_status_reg_2_inst = 0x3F;
tr_debug("Setting QE Bit, Bit 7 of Status Reg 1");
break;
case 5:
// Bit 1 of status Reg 2
_quad_enable_register_idx = 1;
_quad_enable_bit = 1;
tr_debug("Setting QE Bit, Bit 1 of Status Reg 2");
break;
default:
tr_warning("Unsupported QER configuration");
return 0;
}
if (_quad_enable_register_idx != QSPIF_NO_QUAD_ENABLE && _quad_enable_bit != QSPIF_NO_QUAD_ENABLE) {
status_reg_setup[_quad_enable_register_idx] = 1 << _quad_enable_bit;
}
// Read existing status register values
_qspi_read_status_registers(status_regs);
// Set Bits for Quad Enable
for (int i = 0; i < QSPI_MAX_STATUS_REGISTERS; i++) {
status_regs[i] |= status_reg_setup[i];
}
// Write new Status Register Setup
_qspi_write_status_registers(status_regs);
if (false == _is_mem_ready()) {
tr_error("Device not ready after write, failed");
return -1;
}
// For Debug
memset(status_regs, 0, QSPI_MAX_STATUS_REGISTERS);
_qspi_read_status_registers(status_regs);
if (((status_regs[0] & status_reg_setup[0]) | (status_regs[1] & status_reg_setup[1])) == 0) {
tr_error("Status register not set correctly");
return -1;
}
return 0;
}
int QSPIFBlockDevice::_sfdp_set_qpi_enabled(uint8_t *basic_param_table_ptr)
{
uint8_t config_reg[1];
// QPI 4-4-4 Enable Procedure is specified in 5 Bits
uint8_t en_seq_444_value = (((basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_444_MODE_EN_SEQ_BYTE] & 0xF0) >> 4) | ((
basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_444_MODE_EN_SEQ_BYTE + 1] & 0x01) << 4));
switch (en_seq_444_value) {
case 1:
case 2:
tr_debug("_sfdp_set_qpi_enabled - send command 38h");
if (QSPI_STATUS_OK != _qspi_send_general_command(0x38, QSPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0)) {
tr_error("_sfdp_set_qpi_enabled - send command 38h Failed");
}
break;
case 4:
tr_debug("_sfdp_set_qpi_enabled - send command 35h");
if (QSPI_STATUS_OK != _qspi_send_general_command(0x35, QSPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0)) {
tr_error("_sfdp_set_qpi_enabled - send command 35h Failed");
}
break;
case 8:
tr_debug("_sfdp_set_qpi_enabled - set config bit 6 and send command 71h");
if (QSPI_STATUS_OK != _qspi_send_general_command(0x65, 0x800003, NULL, 0, (char *)config_reg, 1)) {
tr_error("_sfdp_set_qpi_enabled - set config bit 6 command 65h Failed");
}
config_reg[0] |= 0x40; //Set Bit 6
if (QSPI_STATUS_OK != _qspi_send_general_command(0x71, 0x800003, NULL, 0, (char *)config_reg, 1)) {
tr_error("_sfdp_set_qpi_enabled - send command 71h Failed");
}
break;
case 16:
tr_debug("_sfdp_set_qpi_enabled - reset config bits 0-7 and send command 61h");
if (QSPI_STATUS_OK != _qspi_send_general_command(0x65, QSPI_NO_ADDRESS_COMMAND, NULL, 0, (char *)config_reg, 1)) {
tr_error("_sfdp_set_qpi_enabled - send command 65h Failed");
}
config_reg[0] &= 0x7F; //Reset Bit 7 of CR
if (QSPI_STATUS_OK != _qspi_send_general_command(0x61, QSPI_NO_ADDRESS_COMMAND, NULL, 0, (char *)config_reg, 1)) {
tr_error("_sfdp_set_qpi_enabled - send command 61 Failed");
}
break;
default:
tr_warning("_sfdp_set_qpi_enabled - Unsupported En Seq 444 configuration");
break;
}
return 0;
}
int QSPIFBlockDevice::_sfdp_detect_page_size(uint8_t *basic_param_table_ptr, int basic_param_table_size)
{
unsigned int page_size = QSPIF_DEFAULT_PAGE_SIZE;
if (basic_param_table_size > QSPIF_BASIC_PARAM_TABLE_PAGE_SIZE_BYTE) {
// Page Size is specified by 4 Bits (N), calculated by 2^N
int page_to_power_size = ((int)basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_PAGE_SIZE_BYTE]) >> 4;
page_size = 1 << page_to_power_size;
tr_debug("Detected Page Size: %d", page_size);
} else {
tr_debug("Using Default Page Size: %d", page_size);
}
return page_size;
}
int QSPIFBlockDevice::_sfdp_detect_erase_types_inst_and_size(uint8_t *basic_param_table_ptr, int basic_param_table_size)
{
uint8_t bitfield = 0x01;
// Erase 4K Inst is taken either from param table legacy 4K erase or superseded by erase Instruction for type of size 4K
if (basic_param_table_size > QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_1_SIZE_BYTE) {
// Loop Erase Types 1-4
for (int i_ind = 0; i_ind < 4; i_ind++) {
_erase_type_inst_arr[i_ind] = QSPI_NO_INST; // Default for unsupported type
_erase_type_size_arr[i_ind] = 1 << basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_1_SIZE_BYTE + 2 * i_ind]; // Size is 2^N where N is the table value
tr_debug("Erase Type(A) %d - Inst: 0x%xh, Size: %d", (i_ind + 1), _erase_type_inst_arr[i_ind],
_erase_type_size_arr[i_ind]);
if (_erase_type_size_arr[i_ind] > 1) {
// if size==1 type is not supported
_erase_type_inst_arr[i_ind] = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_ERASE_TYPE_1_BYTE + 2 * i_ind];
if ((_erase_type_size_arr[i_ind] < _min_common_erase_size) || (_min_common_erase_size == 0)) {
//Set default minimal common erase for signal region
_min_common_erase_size = _erase_type_size_arr[i_ind];
}
_region_erase_types_bitfield[0] |= bitfield; // If there's no region map, set region "0" types bitfield as default
}
tr_debug("Erase Type %d - Inst: 0x%xh, Size: %d", (i_ind + 1), _erase_type_inst_arr[i_ind],
_erase_type_size_arr[i_ind]);
bitfield = bitfield << 1;
}
} else {
tr_debug("SFDP erase types are not available - falling back to legacy 4k erase instruction");
// 0xFF indicates that the legacy 4k erase instruction is not supported
_legacy_erase_instruction = basic_param_table_ptr[QSPIF_BASIC_PARAM_4K_ERASE_TYPE_BYTE];
if (_legacy_erase_instruction == 0xFF) {
tr_error("_detectEraseTypesInstAndSize - Legacy 4k erase instruction not supported");
return -1;
}
}
return 0;
}
int QSPIFBlockDevice::_sfdp_detect_best_bus_read_mode(uint8_t *basic_param_table_ptr, int basic_param_table_size,
bool &set_quad_enable, bool &is_qpi_mode)
{
set_quad_enable = false;
is_qpi_mode = false;
uint8_t examined_byte;
do { // compound statement is the loop body
if (basic_param_table_size > QSPIF_BASIC_PARAM_TABLE_QPI_READ_SUPPORT_BYTE) {
examined_byte = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_QPI_READ_SUPPORT_BYTE];
if (examined_byte & 0x10) {
// QPI 4-4-4 Supported
_read_instruction = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_444_READ_INST_BYTE];
set_quad_enable = true;
is_qpi_mode = true;
_dummy_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_444_READ_INST_BYTE - 1] & 0x1F;
uint8_t mode_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_444_READ_INST_BYTE - 1] >> 5;
_alt_size = mode_cycles * 4;
tr_debug("Read Bus Mode set to 4-4-4, Instruction: 0x%xh", _read_instruction);
_address_width = QSPI_CFG_BUS_QUAD;
_data_width = QSPI_CFG_BUS_QUAD;
}
}
is_qpi_mode = false;
examined_byte = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_FAST_READ_SUPPORT_BYTE];
if (examined_byte & 0x20) {
// Fast Read 1-4-4 Supported
_read_instruction = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_144_READ_INST_BYTE];
set_quad_enable = true;
_dummy_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_144_READ_INST_BYTE - 1] & 0x1F;
uint8_t mode_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_144_READ_INST_BYTE - 1] >> 5;
_alt_size = mode_cycles * 4;
_address_width = QSPI_CFG_BUS_QUAD;
_data_width = QSPI_CFG_BUS_QUAD;
tr_debug("Read Bus Mode set to 1-4-4, Instruction: 0x%xh", _read_instruction);
break;
}
if (examined_byte & 0x40) {
// Fast Read 1-1-4 Supported
_read_instruction = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_114_READ_INST_BYTE];
set_quad_enable = true;
_dummy_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_114_READ_INST_BYTE - 1] & 0x1F;
uint8_t mode_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_114_READ_INST_BYTE - 1] >> 5;
_alt_size = mode_cycles;
_data_width = QSPI_CFG_BUS_QUAD;
tr_debug("Read Bus Mode set to 1-1-4, Instruction: 0x%xh", _read_instruction);
break;
}
examined_byte = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_QPI_READ_SUPPORT_BYTE];
if (examined_byte & 0x01) {
// Fast Read 2-2-2 Supported
_read_instruction = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_222_READ_INST_BYTE];
_dummy_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_222_READ_INST_BYTE - 1] & 0x1F;
uint8_t mode_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_222_READ_INST_BYTE - 1] >> 5;
_alt_size = mode_cycles * 2;
_address_width = QSPI_CFG_BUS_DUAL;
_data_width = QSPI_CFG_BUS_DUAL;
tr_debug("Read Bus Mode set to 2-2-2, Instruction: 0x%xh", _read_instruction);
break;
}
examined_byte = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_FAST_READ_SUPPORT_BYTE];
if (examined_byte & 0x10) {
// Fast Read 1-2-2 Supported
_read_instruction = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_122_READ_INST_BYTE];
_dummy_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_122_READ_INST_BYTE - 1] & 0x1F;
uint8_t mode_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_122_READ_INST_BYTE - 1] >> 5;
_alt_size = mode_cycles * 2;
_address_width = QSPI_CFG_BUS_DUAL;
_data_width = QSPI_CFG_BUS_DUAL;
tr_debug("Read Bus Mode set to 1-2-2, Instruction: 0x%xh", _read_instruction);
break;
}
if (examined_byte & 0x01) {
// Fast Read 1-1-2 Supported
_read_instruction = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_112_READ_INST_BYTE];
_dummy_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_112_READ_INST_BYTE - 1] & 0x1F;
uint8_t mode_cycles = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_112_READ_INST_BYTE - 1] >> 5;
_alt_size = mode_cycles;
_data_width = QSPI_CFG_BUS_DUAL;
tr_debug("Read Bus Mode set to 1-1-2, Instruction: 0x%xh", _read_instruction);
break;
}
_read_instruction = QSPIF_INST_READ_DEFAULT;
tr_debug("Read Bus Mode set to 1-1-1, Instruction: 0x%xh", _read_instruction);
} while (false);
return 0;
}
int QSPIFBlockDevice::_sfdp_detect_and_enable_4byte_addressing(uint8_t *basic_param_table_ptr, int basic_param_table_size)
{
int status = QSPIF_BD_ERROR_OK;
qspi_status_t qspi_status = QSPI_STATUS_OK;
// Always enable 4-byte addressing if possible
if (basic_param_table_size > QSPIF_BASIC_PARAM_TABLE_4BYTE_ADDR_BYTE) {
uint8_t examined_byte = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_4BYTE_ADDR_BYTE];
if (examined_byte & FOURBYTE_ADDR_ALWAYS_BITMASK) {
// No need to do anything if 4-byte addressing is always enabled
_address_size = QSPI_CFG_ADDR_SIZE_32;
} else if (examined_byte & FOURBYTE_ADDR_B7_BITMASK) {
// Issue instruction B7h to enable 4-byte addressing
qspi_status = _qspi_send_general_command(0xB7, QSPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0);
status = (qspi_status == QSPI_STATUS_OK) ? QSPIF_BD_ERROR_OK : QSPIF_BD_ERROR_PARSING_FAILED;
if (status == QSPIF_BD_ERROR_OK) {
_address_size = QSPI_CFG_ADDR_SIZE_32;
}
} else if (examined_byte & FOURBYTE_ADDR_B7_WREN_BITMASK) {
// Issue WREN and then instruction B7h to enable 4-byte addressing
if (_set_write_enable() == 0) {
qspi_status = _qspi_send_general_command(0xB7, QSPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0);
status = (qspi_status == QSPI_STATUS_OK) ? QSPIF_BD_ERROR_OK : QSPIF_BD_ERROR_PARSING_FAILED;
if (status == QSPIF_BD_ERROR_OK) {
_address_size = QSPI_CFG_ADDR_SIZE_32;
}
} else {
tr_error("Write enable failed");
status = QSPIF_BD_ERROR_WREN_FAILED;
}
} else if (examined_byte & FOURBYTE_ADDR_CONF_REG_BITMASK) {
// Write 1 to bit 0 of a configuration register to enable 4-byte addressing
// Write to register with instruction B1h, read from register with instruction B5h
uint8_t conf_register = 0;
qspi_status = _qspi_send_general_command(0xB5, QSPI_NO_ADDRESS_COMMAND, NULL, 0, (char *) &conf_register, 1);
status = (qspi_status == QSPI_STATUS_OK) ? QSPIF_BD_ERROR_OK : QSPIF_BD_ERROR_PARSING_FAILED;
if (status == QSPIF_BD_ERROR_OK) {
conf_register |= 0b00000001;
if (_set_write_enable() == 0) {
qspi_status_t qspi_status = _qspi_send_general_command(0xB1, QSPI_NO_ADDRESS_COMMAND, (char *) &conf_register, 1, NULL, 0);
status = (qspi_status == QSPI_STATUS_OK) ? QSPIF_BD_ERROR_OK : QSPIF_BD_ERROR_PARSING_FAILED;
if (status == QSPIF_BD_ERROR_OK) {
_address_size = QSPI_CFG_ADDR_SIZE_32;
}
} else {
tr_error("Write enable failed");
status = QSPIF_BD_ERROR_WREN_FAILED;
}
}
} else if (examined_byte & FOURBYTE_ADDR_BANK_REG_BITMASK) {
// Write 1 to bit 7 of a bank register to enable 4-byte addressing
// Write to register with instruction 17h, read from register with instruction 16h
uint8_t to_write = 0b10000000;
qspi_status = _qspi_send_general_command(0x17, QSPI_NO_ADDRESS_COMMAND, (char *) &to_write, 1, NULL, 0);
status = (qspi_status == QSPI_STATUS_OK) ? QSPIF_BD_ERROR_OK : QSPIF_BD_ERROR_PARSING_FAILED;
if (status == QSPIF_BD_ERROR_OK) {
_address_size = QSPI_CFG_ADDR_SIZE_32;
}
} else if (examined_byte & FOURBYTE_ADDR_EXT_ADDR_REG_BITMASK) {
// Extended address register stores most significant byte of a 4-byte address
// Instructions are sent with the lower 3 bytes of the address
// Write to register with instruction C5h, read from register with instruction C8h
_4byte_msb_reg_write_inst = 0xC5;
_address_size = QSPI_CFG_ADDR_SIZE_24;
} else {
// Either part specific instructions are required to use 4-byte addressing or it isn't supported, so use 3-byte addressing instead
tr_debug("_sfdp_detect_and_enable_4byte_addressing - 4-byte addressing not supported, falling back to 3-byte addressing");
_address_size = QSPI_CFG_ADDR_SIZE_24;
}
if (_address_size == QSPI_CFG_ADDR_SIZE_32) {
// Update 1-1-1 format to match new address size
if (QSPI_STATUS_OK != _qspi.configure_format(QSPI_CFG_BUS_SINGLE, QSPI_CFG_BUS_SINGLE, _address_size, QSPI_CFG_BUS_SINGLE,
0, QSPI_CFG_BUS_SINGLE, 0)) {
tr_error("_qspi_configure_format failed");
status = QSPIF_BD_ERROR_DEVICE_ERROR;
}
}
}
return status;
}
int QSPIFBlockDevice::_sfdp_detect_reset_protocol_and_reset(uint8_t *basic_param_table_ptr)
{
int status = QSPIF_BD_ERROR_OK;
uint8_t examined_byte = basic_param_table_ptr[QSPIF_BASIC_PARAM_TABLE_SOFT_RESET_BYTE];
// Ignore bit indicating need to exit 0-4-4 mode - should not enter 0-4-4 mode from QSPIFBlockDevice
if (examined_byte & SOFT_RESET_RESET_INST_BITMASK) {
// Issue instruction 0xF0 to reset the device
qspi_status_t qspi_status = _qspi_send_general_command(0xF0, QSPI_NO_ADDRESS_COMMAND, // Send reset instruction
NULL, 0, NULL, 0);
status = (qspi_status == QSPI_STATUS_OK) ? QSPIF_BD_ERROR_OK : QSPIF_BD_ERROR_PARSING_FAILED;
} else if (examined_byte & SOFT_RESET_ENABLE_AND_RESET_INST_BITMASK) {
// Issue instruction 66h to enable resets on the device
// Then issue instruction 99h to reset the device
qspi_status_t qspi_status = _qspi_send_general_command(0x66, QSPI_NO_ADDRESS_COMMAND, // Send reset enable instruction
NULL, 0, NULL, 0);
if (qspi_status == QSPI_STATUS_OK) {
qspi_status = _qspi_send_general_command(0x99, QSPI_NO_ADDRESS_COMMAND, // Send reset instruction
NULL, 0, NULL, 0);
}
status = (qspi_status == QSPI_STATUS_OK) ? QSPIF_BD_ERROR_OK : QSPIF_BD_ERROR_PARSING_FAILED;
} else {
// Soft reset either is not supported or requires direct control over data lines
status = QSPIF_BD_ERROR_PARSING_FAILED;
}
if (status == QSPIF_BD_ERROR_OK) {
if (false == _is_mem_ready()) {
tr_error("Device not ready, reset failed");
status = QSPIF_BD_ERROR_READY_FAILED;
}
}
return status;
}
int QSPIFBlockDevice::_sfdp_parse_sector_map_table(uint32_t sector_map_table_addr, size_t sector_map_table_size)
{
uint8_t sector_map_table[SFDP_DEFAULT_BASIC_PARAMS_TABLE_SIZE_BYTES]; /* Up To 16 DWORDS = 64 Bytes */
uint32_t tmp_region_size = 0;
int i_ind = 0;
int prev_boundary = 0;
// Default set to all type bits 1-4 are common
int min_common_erase_type_bits = ERASE_BITMASK_ALL;
qspi_status_t status = _qspi_send_read_sfdp_command(sector_map_table_addr, (char *) sector_map_table, sector_map_table_size);
if (status != QSPI_STATUS_OK) {
tr_error("Init - Read SFDP First Table Failed");
return -1;
}
// Currently we support only Single Map Descriptor
if (!((sector_map_table[0] & 0x3) == 0x03) && (sector_map_table[1] == 0x0)) {
tr_error("Sector Map - Supporting Only Single! Map Descriptor (not map commands)");
return -1;
}
_regions_count = sector_map_table[2] + 1;
if (_regions_count > QSPIF_MAX_REGIONS) {
tr_error("Supporting up to %d regions, current setup to %d regions - fail",
QSPIF_MAX_REGIONS, _regions_count);
return -1;
}
// Loop through Regions and set for each one: size, supported erase types, high boundary offset
// Calculate minimum Common Erase Type for all Regions
for (i_ind = 0; i_ind < _regions_count; i_ind++) {
tmp_region_size = ((*((uint32_t *)&sector_map_table[(i_ind + 1) * 4])) >> 8) & 0x00FFFFFF; // bits 9-32
_region_size_bytes[i_ind] = (tmp_region_size + 1) * 256; // Region size is 0 based multiple of 256 bytes;
_region_erase_types_bitfield[i_ind] = sector_map_table[(i_ind + 1) * 4] & 0x0F; // bits 1-4
min_common_erase_type_bits &= _region_erase_types_bitfield[i_ind];
_region_high_boundary[i_ind] = (_region_size_bytes[i_ind] - 1) + prev_boundary;
prev_boundary = _region_high_boundary[i_ind] + 1;
}
// Calc minimum Common Erase Size from min_common_erase_type_bits
uint8_t type_mask = ERASE_BITMASK_TYPE1;
for (i_ind = 0; i_ind < 4; i_ind++) {
if (min_common_erase_type_bits & type_mask) {
_min_common_erase_size = _erase_type_size_arr[i_ind];
break;
}
type_mask = type_mask << 1;
}
if (i_ind == 4) {
// No common erase type was found between regions
_min_common_erase_size = 0;
}
return 0;
}
int QSPIFBlockDevice::_handle_vendor_quirks()
{
uint8_t vendor_device_ids[QSPI_RDID_DATA_LENGTH] = {0};
/* Read Manufacturer ID (1byte), and Device ID (2bytes) */
qspi_status_t status = _qspi_send_general_command(QSPIF_INST_RDID, QSPI_NO_ADDRESS_COMMAND,
NULL, 0,
(char *) vendor_device_ids, QSPI_RDID_DATA_LENGTH);
if (QSPI_STATUS_OK != status) {
tr_error("Read Vendor ID Failed");
return -1;
}
tr_debug("Vendor device ID = 0x%x 0x%x 0x%x", vendor_device_ids[0], vendor_device_ids[1], vendor_device_ids[2]);
switch (vendor_device_ids[0]) {
case 0xbf:
// SST devices come preset with block protection
// enabled for some regions, issue global protection unlock to clear
tr_debug("Applying quirks for SST");
_clear_protection_method = QSPIF_BP_ULBPR;
break;
case 0xc2:
// Macronix devices have two quirks:
// 1. Have one status register and 2 config registers, with a nonstandard instruction for reading the config registers
// 2. Require setting a "fast mode" bit in config register 2 to operate at higher clock rates
tr_debug("Applying quirks for macronix");
_num_status_registers = 3;
_read_status_reg_2_inst = QSPIF_INST_RDCR;
break;
}
return 0;
}
int QSPIFBlockDevice::_clear_block_protection()
{
uint8_t status_regs[QSPI_MAX_STATUS_REGISTERS] = {0};
if (false == _is_mem_ready()) {
tr_error("Device not ready, clearing block protection failed");
return -1;
}
qspi_status_t status;
switch (_clear_protection_method) {
case QSPIF_BP_ULBPR:
tr_debug("Clearing block protection via ULBPR");
// SST devices come preset with block protection
// enabled for some regions, issue global protection unlock to clear
if (0 != _set_write_enable()) {
tr_error("Write enable failed");
return -1;
}
status = _qspi_send_general_command(QSPIF_INST_ULBPR, QSPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0);
if (QSPI_STATUS_OK != status) {
tr_error("Global block protection unlock failed");
return -1;
}
break;
case QSPIF_BP_CLEAR_SR:
// For all other devices, to clear the block protection bits clear all bits
// in status register 1 that aren't the WIP or WEL bits, or the QE bit (if it is in SR 1)
tr_debug("Clearing block protection via status register protection bits");
status = _qspi_read_status_registers(status_regs);
if (QSPI_STATUS_OK != status) {
tr_error("_clear_block_protection - Status register read failed");
return -1;
}
uint8_t status_mask = (QSPIF_STATUS_BIT_WIP | QSPIF_STATUS_BIT_WEL);
if (_quad_enable_register_idx == 0) {
status_mask |= 1 << _quad_enable_bit;
}
status_regs[0] &= status_mask;
status = _qspi_write_status_registers(status_regs);
if (QSPI_STATUS_OK != status) {
tr_error("__clear_block_protection - Status register write failed");
return -1;
}
break;
}
if (false == _is_mem_ready()) {
tr_error("Device not ready, clearing block protection failed");
return -1;
}
return 0;
}
int QSPIFBlockDevice::_set_write_enable()
{
// Check Status Register Busy Bit to Verify the Device isn't Busy
uint8_t status_value = 0;
int status = -1;
do {
if (QSPI_STATUS_OK != _qspi_send_general_command(QSPIF_INST_WREN, QSPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0)) {
tr_error("Sending WREN command FAILED");
break;
}
if (false == _is_mem_ready()) {
tr_error("Device not ready, write failed");
break;
}
if (QSPI_STATUS_OK != _qspi_send_general_command(QSPIF_INST_RSR1, QSPI_NO_ADDRESS_COMMAND,
NULL, 0,
(char *) &status_value, 1)) {
tr_error("Reading Status Register 1 failed");
break;
}
if ((status_value & QSPIF_STATUS_BIT_WEL) == 0) {
tr_error("_set_write_enable failed - status register 1 value: %u", status_value);
break;
}
status = 0;
} while (false);
return status;
}
int QSPIFBlockDevice::_enable_fast_mode()
{
char status_reg[QSPI_MAX_STATUS_REGISTERS] = {0};
unsigned int read_conf_register_inst = 0x15;
char status_reg_qer_setup[QSPI_MAX_STATUS_REGISTERS] = {0};
status_reg_qer_setup[2] = 0x2; // Bit 1 of config Reg 2
// Configure BUS Mode to 1_1_1 for all commands other than Read
if (QSPI_STATUS_OK != _qspi.configure_format(QSPI_CFG_BUS_SINGLE, QSPI_CFG_BUS_SINGLE, QSPI_CFG_ADDR_SIZE_24, QSPI_CFG_BUS_SINGLE,
0, QSPI_CFG_BUS_SINGLE, 0)) {
tr_error("_qspi_configure_format failed");
return -1;
}
// Read Status Register
if (QSPI_STATUS_OK == _qspi_send_general_command(read_conf_register_inst, QSPI_NO_ADDRESS_COMMAND, NULL, 0,
&status_reg[1],
QSPI_MAX_STATUS_REGISTERS - 1)) { // store received values in status_value
tr_debug("Reading Config Register Success: value = 0x%x", (int)status_reg[2]);
} else {
tr_error("Reading Config Register failed");
return -1;
}
// Set Bits for Quad Enable
for (int i = 0; i < QSPI_MAX_STATUS_REGISTERS; i++) {
status_reg[i] |= status_reg_qer_setup[i];
}
// Write new Status Register Setup
if (_set_write_enable() != 0) {
tr_error("Write Enabe failed");
return -1;
}
if (QSPI_STATUS_OK == _qspi_send_general_command(QSPIF_INST_WSR1, QSPI_NO_ADDRESS_COMMAND, status_reg,
QSPI_MAX_STATUS_REGISTERS, NULL,
0)) { // Write Fast mode bit to status_register
tr_debug("fast mode enable - Writing Config Register Success: value = 0x%x",
(int)status_reg[2]);
} else {
tr_error("fast mode enable - Writing Config Register failed");
return -1;
}
if (false == _is_mem_ready()) {
tr_error("Device not ready after write, failed");
return -1;
}
// For Debug
memset(status_reg, 0, QSPI_MAX_STATUS_REGISTERS);
if (QSPI_STATUS_OK == _qspi_send_general_command(read_conf_register_inst, QSPI_NO_ADDRESS_COMMAND, NULL, 0,
&status_reg[1],
QSPI_MAX_STATUS_REGISTERS - 1)) { // store received values in status_value
tr_debug("Verifying Config Register Success: value = 0x%x", (int)status_reg[2]);
} else {
tr_error("Verifying Config Register failed");
return -1;
}
return 0;
}
bool QSPIFBlockDevice::_is_mem_ready()
{
// Check Status Register Busy Bit to Verify the Device isn't Busy
uint8_t status_value = 0;
int retries = 0;
bool mem_ready = true;
do {
rtos::ThisThread::sleep_for(1);
retries++;
//Read Status Register 1 from device
if (QSPI_STATUS_OK != _qspi_send_general_command(QSPIF_INST_RSR1, QSPI_NO_ADDRESS_COMMAND,
NULL, 0,
(char *) &status_value, 1)) { // store received value in status_value
tr_error("Reading Status Register failed");
}
} while ((status_value & QSPIF_STATUS_BIT_WIP) != 0 && retries < IS_MEM_READY_MAX_RETRIES);
if ((status_value & QSPIF_STATUS_BIT_WIP) != 0) {
tr_error("_is_mem_ready FALSE: status value = 0x%x ", status_value);
mem_ready = false;
}
return mem_ready;
}
/*********************************************/
/************* Utility Functions *************/
/*********************************************/
int QSPIFBlockDevice::_utils_find_addr_region(bd_size_t offset)
{
//Find the region to which the given offset belong to
if ((offset > _device_size_bytes) || (_regions_count == 0)) {
return -1;
}
if (_regions_count == 1) {
return 0;
}
for (int i_ind = _regions_count - 2; i_ind >= 0; i_ind--) {
if (offset > _region_high_boundary[i_ind]) {
return (i_ind + 1);
}
}
return -1;
}
int QSPIFBlockDevice::_utils_iterate_next_largest_erase_type(uint8_t &bitfield, int size, int offset, int boundry)
{
// Iterate on all supported Erase Types of the Region to which the offset belong to.
// Iterates from highest type to lowest
uint8_t type_mask = ERASE_BITMASK_TYPE4;
int i_ind = 0;
int largest_erase_type = 0;
for (i_ind = 3; i_ind >= 0; i_ind--) {
if (bitfield & type_mask) {
largest_erase_type = i_ind;
if ((size > (int)(_erase_type_size_arr[largest_erase_type])) &&
((boundry - offset) > (int)(_erase_type_size_arr[largest_erase_type]))) {
break;
} else {
bitfield &= ~type_mask;
}
}
type_mask = type_mask >> 1;
}
if (i_ind == 4) {
tr_error("No erase type was found for current region addr");
}
return largest_erase_type;
}
/***************************************************/
/*********** QSPI Driver API Functions *************/
/***************************************************/
qspi_status_t QSPIFBlockDevice::_qspi_set_frequency(int freq)
{
return _qspi.set_frequency(freq);
}
qspi_status_t QSPIFBlockDevice::_qspi_update_4byte_ext_addr_reg(bd_addr_t addr)
{
qspi_status_t status = QSPI_STATUS_OK;
// Only update register if in the extended address register mode
if (_4byte_msb_reg_write_inst != QSPI_NO_INST) {
// Set register to the most significant byte of the address
uint8_t most_significant_byte = addr >> 24;
if (_set_write_enable() == 0) {
status = _qspi.command_transfer(_4byte_msb_reg_write_inst, (int) QSPI_NO_ADDRESS_COMMAND,
(char *) &most_significant_byte, 1,
NULL, 0);
} else {
tr_error("Write enable failed");
status = QSPI_STATUS_ERROR;
}
} else if ((_address_size != QSPI_CFG_ADDR_SIZE_32) && (addr != QSPI_NO_ADDRESS_COMMAND) && (addr >= (1 << 24))) {
tr_error("Attempted to use 4-byte address but 4-byte addressing is not supported");
status = QSPI_STATUS_ERROR;
}
return status;
}
qspi_status_t QSPIFBlockDevice::_qspi_send_read_command(qspi_inst_t read_inst, void *buffer,
bd_addr_t addr, bd_size_t size)
{
tr_debug("Inst: 0x%xh, addr: %llu, size: %llu", read_inst, addr, size);
size_t buf_len = size;
qspi_status_t status = _qspi_update_4byte_ext_addr_reg(addr);
if (QSPI_STATUS_OK != status) {
tr_error("QSPI Read - Updating 4-byte addressing extended address register failed");
return status;
}
// Send read command to device driver
// Read commands use the best bus mode supported by the part
status = _qspi.configure_format(_inst_width, _address_width, _address_size, _address_width, // Alt width should be the same as address width
_alt_size, _data_width, _dummy_cycles);
if (QSPI_STATUS_OK != status) {
tr_error("_qspi_configure_format failed");
return status;
}
// Don't check the read status until after we've configured the format back to 1-1-1, to avoid leaving the interface in an
// incorrect state if the read fails.
status = _qspi.read(read_inst, (_alt_size == 0) ? -1 : QSPI_ALT_DEFAULT_VALUE, (unsigned int)addr, (char *)buffer, &buf_len);
// All commands other than Read and RSFDP use default 1-1-1 bus mode (Program/Erase are constrained by flash memory performance more than bus performance)
qspi_status_t format_status = _qspi.configure_format(QSPI_CFG_BUS_SINGLE, QSPI_CFG_BUS_SINGLE, _address_size, QSPI_CFG_BUS_SINGLE, 0, QSPI_CFG_BUS_SINGLE, 0);
if (QSPI_STATUS_OK != format_status) {
tr_error("_qspi_configure_format failed");
return format_status;
}
if (QSPI_STATUS_OK != status) {
tr_error("QSPI Read failed");
return status;
}
return QSPI_STATUS_OK;
}
qspi_status_t QSPIFBlockDevice::_qspi_send_program_command(qspi_inst_t prog_inst, const void *buffer,
bd_addr_t addr, bd_size_t *size)
{
tr_debug("Inst: 0x%xh, addr: %llu, size: %llu", prog_inst, addr, *size);
qspi_status_t status = _qspi_update_4byte_ext_addr_reg(addr);
if (QSPI_STATUS_OK != status) {
tr_error("QSPI Write - Updating 4-byte addressing extended address register failed");
return status;
}
// Send program (write) command to device driver
status = _qspi.write(prog_inst, -1, addr, (char *)buffer, (size_t *)size);
if (QSPI_STATUS_OK != status) {
tr_error("QSPI Write failed");
return status;
}
return QSPI_STATUS_OK;
}
qspi_status_t QSPIFBlockDevice::_qspi_send_erase_command(qspi_inst_t erase_inst, bd_addr_t addr, bd_size_t size)
{
tr_debug("Inst: 0x%xh, addr: %llu, size: %llu", erase_inst, addr, size);
qspi_status_t status = _qspi_update_4byte_ext_addr_reg(addr);
if (QSPI_STATUS_OK != status) {
tr_error("QSPI Erase - Updating 4-byte addressing extended address register failed");
return status;
}
// Send erase command to driver
status = _qspi.command_transfer(erase_inst, (int) addr, NULL, 0, NULL, 0);
if (QSPI_STATUS_OK != status) {
tr_error("QSPI Erase failed");
return status;
}
return QSPI_STATUS_OK;
}
qspi_status_t QSPIFBlockDevice::_qspi_send_general_command(qspi_inst_t instruction, bd_addr_t addr,
const char *tx_buffer, bd_size_t tx_length,
const char *rx_buffer, bd_size_t rx_length)
{
tr_debug("Inst: 0x%xh, addr: %llu, tx length: %llu, rx length: %llu", instruction, addr, tx_length, rx_length);
qspi_status_t status = _qspi_update_4byte_ext_addr_reg(addr);
if (QSPI_STATUS_OK != status) {
tr_error("QSPI Generic command - Updating 4-byte addressing extended address register failed");
return status;
}
// Send a general command instruction to driver
status = _qspi.command_transfer(instruction, (int)addr, tx_buffer, tx_length, rx_buffer, rx_length);
if (QSPI_STATUS_OK != status) {
tr_error("Sending Generic command: %x", instruction);
return status;
}
return QSPI_STATUS_OK;
}
qspi_status_t QSPIFBlockDevice::_qspi_send_read_sfdp_command(bd_addr_t addr, void *rx_buffer, bd_size_t rx_length)
{
size_t rx_len = rx_length;
// SFDP read instruction requires 1-1-1 bus mode with 8 dummy cycles and a 3-byte address
qspi_status_t status = _qspi.configure_format(QSPI_CFG_BUS_SINGLE, QSPI_CFG_BUS_SINGLE, QSPI_CFG_ADDR_SIZE_24, QSPI_CFG_BUS_SINGLE, 0, QSPI_CFG_BUS_SINGLE, QSPIF_RSFDP_DUMMY_CYCLES);
if (QSPI_STATUS_OK != status) {
tr_error("_qspi_configure_format failed");
return status;
}
// Don't check the read status until after we've configured the format back to 1-1-1, to avoid leaving the interface in an
// incorrect state if the read fails.
status = _qspi.read(QSPIF_INST_RSFDP, -1, (unsigned int) addr, (char *) rx_buffer, &rx_len);
qspi_status_t format_status = _qspi.configure_format(QSPI_CFG_BUS_SINGLE, QSPI_CFG_BUS_SINGLE, _address_size, QSPI_CFG_BUS_SINGLE, 0, QSPI_CFG_BUS_SINGLE, 0);
// All commands other than Read and RSFDP use default 1-1-1 bus mode (Program/Erase are constrained by flash memory performance more than bus performance)
if (QSPI_STATUS_OK != format_status) {
tr_error("_qspi_configure_format failed");
return format_status;
}
if (QSPI_STATUS_OK != status) {
tr_error("Sending SFDP read instruction");
return status;
}
return QSPI_STATUS_OK;
}
qspi_status_t QSPIFBlockDevice::_qspi_read_status_registers(uint8_t *reg_buffer)
{
// Read Status Register 1
qspi_status_t status = _qspi_send_general_command(QSPIF_INST_RSR1, QSPI_NO_ADDRESS_COMMAND,
NULL, 0,
(char *) &reg_buffer[0], 1);
if (QSPI_STATUS_OK == status) {
tr_debug("Reading Status Register 1 Success: value = 0x%x", (int) reg_buffer[0]);
} else {
tr_error("Reading Status Register 1 failed");
return status;
}
// Read Status Register 2 (and beyond, if applicable)
unsigned int read_length = _num_status_registers - 1; // We already read status reg 1 above
status = _qspi_send_general_command(_read_status_reg_2_inst, QSPI_NO_ADDRESS_COMMAND,
NULL, 0,
(char *) &reg_buffer[1], read_length);
if (QSPI_STATUS_OK == status) {
tr_debug("Reading Status Register 2 Success: value = 0x%x", (int) reg_buffer[1]);
if (_num_status_registers > 2) {
tr_debug("Reading Register 3 Success: value = 0x%x", (int) reg_buffer[2]);
}
} else {
tr_error("Reading Status Register 2 failed");
return status;
}
return QSPI_STATUS_OK;
}
qspi_status_t QSPIFBlockDevice::_qspi_write_status_registers(uint8_t *reg_buffer)
{
qspi_status_t status;
if (_write_status_reg_2_inst == QSPI_NO_INST) {
// Status registers are written on different data bytes of the same command
if (_set_write_enable() != 0) {
tr_error("Write Enable failed");
return QSPI_STATUS_ERROR;
}
status = _qspi_send_general_command(QSPIF_INST_WSR1, QSPI_NO_ADDRESS_COMMAND,
(char *) reg_buffer, _num_status_registers,
NULL, 0);
if (QSPI_STATUS_OK == status) {
tr_debug("Writing Status Registers Success: reg 1 value = 0x%x, reg 2 value = 0x%x",
(int) reg_buffer[0], (int) reg_buffer[1]);
if (_num_status_registers > 2) {
tr_debug("Writing Register 3 Success: value = 0x%x", (int) reg_buffer[2]);
}
} else {
tr_error("Writing Status Registers failed");
return status;
}
} else {
// Status registers are written using different commands
MBED_ASSERT(_num_status_registers == 2); // This flow doesn't support a nonstandard third status/config register
// Write status register 1
if (_set_write_enable() != 0) {
tr_error("Write Enable failed");
return QSPI_STATUS_ERROR;
}
status = _qspi_send_general_command(QSPIF_INST_WSR1, QSPI_NO_ADDRESS_COMMAND,
(char *) &reg_buffer[0], 1,
NULL, 0);
if (QSPI_STATUS_OK == status) {
tr_debug("Writing Status Register 1 Success: value = 0x%x",
(int) reg_buffer[0]);
} else {
tr_error("Writing Status Register 1 failed");
return status;
}
// Write status register 2
if (_set_write_enable() != 0) {
tr_error("Write Enable failed");
return QSPI_STATUS_ERROR;
}
status = _qspi_send_general_command(_write_status_reg_2_inst, QSPI_NO_ADDRESS_COMMAND,
(char *) &reg_buffer[0], 1,
NULL, 0);
if (QSPI_STATUS_OK == status) {
tr_debug("Writing Status Register 2 Success: value = 0x%x",
(int) reg_buffer[1]);
} else {
tr_error("Writing Status Register 2 failed");
return status;
}
}
return QSPI_STATUS_OK;
}