mbed-os/drivers/SPI.cpp

249 lines
6.1 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "drivers/SPI.h"
#include "platform/mbed_critical.h"
#if DEVICE_SPI_ASYNCH
#include "platform/mbed_sleep.h"
#endif
#if DEVICE_SPI
namespace mbed {
#if DEVICE_SPI_ASYNCH && TRANSACTION_QUEUE_SIZE_SPI
CircularBuffer<Transaction<SPI>, TRANSACTION_QUEUE_SIZE_SPI> SPI::_transaction_buffer;
#endif
SPI::SPI(PinName mosi, PinName miso, PinName sclk, PinName ssel) :
_spi(),
#if DEVICE_SPI_ASYNCH
_irq(this),
_usage(DMA_USAGE_NEVER),
#endif
_bits(8),
_mode(0),
_hz(1000000),
_write_fill(SPI_FILL_CHAR) {
// No lock needed in the constructor
spi_init(&_spi, mosi, miso, sclk, ssel);
_acquire();
}
void SPI::format(int bits, int mode) {
lock();
_bits = bits;
_mode = mode;
// If changing format while you are the owner than just
// update format, but if owner is changed than even frequency should be
// updated which is done by acquire.
if (_owner == this) {
spi_format(&_spi, _bits, _mode, 0);
} else {
_acquire();
}
unlock();
}
void SPI::frequency(int hz) {
lock();
_hz = hz;
// If changing format while you are the owner than just
// update frequency, but if owner is changed than even frequency should be
// updated which is done by acquire.
if (_owner == this) {
spi_frequency(&_spi, _hz);
} else {
_acquire();
}
unlock();
}
SPI* SPI::_owner = NULL;
SingletonPtr<PlatformMutex> SPI::_mutex;
// ignore the fact there are multiple physical spis, and always update if it wasnt us last
void SPI::aquire() {
lock();
if (_owner != this) {
spi_format(&_spi, _bits, _mode, 0);
spi_frequency(&_spi, _hz);
_owner = this;
}
unlock();
}
// Note: Private function with no locking
void SPI::_acquire() {
if (_owner != this) {
spi_format(&_spi, _bits, _mode, 0);
spi_frequency(&_spi, _hz);
_owner = this;
}
}
int SPI::write(int value) {
lock();
_acquire();
int ret = spi_master_write(&_spi, value);
unlock();
return ret;
}
int SPI::write(const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length) {
lock();
_acquire();
int ret = spi_master_block_write(&_spi, tx_buffer, tx_length, rx_buffer, rx_length, _write_fill);
unlock();
return ret;
}
void SPI::lock() {
_mutex->lock();
}
void SPI::unlock() {
_mutex->unlock();
}
void SPI::set_default_write_value(char data) {
lock();
_write_fill = data;
unlock();
}
#if DEVICE_SPI_ASYNCH
int SPI::transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t& callback, int event)
{
if (spi_active(&_spi)) {
return queue_transfer(tx_buffer, tx_length, rx_buffer, rx_length, bit_width, callback, event);
}
start_transfer(tx_buffer, tx_length, rx_buffer, rx_length, bit_width, callback, event);
return 0;
}
void SPI::abort_transfer()
{
spi_abort_asynch(&_spi);
sleep_manager_unlock_deep_sleep();
#if TRANSACTION_QUEUE_SIZE_SPI
dequeue_transaction();
#endif
}
void SPI::clear_transfer_buffer()
{
#if TRANSACTION_QUEUE_SIZE_SPI
_transaction_buffer.reset();
#endif
}
void SPI::abort_all_transfers()
{
clear_transfer_buffer();
abort_transfer();
}
int SPI::set_dma_usage(DMAUsage usage)
{
if (spi_active(&_spi)) {
return -1;
}
_usage = usage;
return 0;
}
int SPI::queue_transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t& callback, int event)
{
#if TRANSACTION_QUEUE_SIZE_SPI
transaction_t t;
t.tx_buffer = const_cast<void *>(tx_buffer);
t.tx_length = tx_length;
t.rx_buffer = rx_buffer;
t.rx_length = rx_length;
t.event = event;
t.callback = callback;
t.width = bit_width;
Transaction<SPI> transaction(this, t);
if (_transaction_buffer.full()) {
return -1; // the buffer is full
} else {
core_util_critical_section_enter();
_transaction_buffer.push(transaction);
if (!spi_active(&_spi)) {
dequeue_transaction();
}
core_util_critical_section_exit();
return 0;
}
#else
return -1;
#endif
}
void SPI::start_transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t& callback, int event)
{
sleep_manager_lock_deep_sleep();
_acquire();
_callback = callback;
_irq.callback(&SPI::irq_handler_asynch);
spi_master_transfer(&_spi, tx_buffer, tx_length, rx_buffer, rx_length, bit_width, _irq.entry(), event , _usage);
}
#if TRANSACTION_QUEUE_SIZE_SPI
void SPI::start_transaction(transaction_t *data)
{
start_transfer(data->tx_buffer, data->tx_length, data->rx_buffer, data->rx_length, data->width, data->callback, data->event);
}
void SPI::dequeue_transaction()
{
Transaction<SPI> t;
if (_transaction_buffer.pop(t)) {
SPI* obj = t.get_object();
transaction_t* data = t.get_transaction();
obj->start_transaction(data);
}
}
#endif
void SPI::irq_handler_asynch(void)
{
int event = spi_irq_handler_asynch(&_spi);
if (_callback && (event & SPI_EVENT_ALL)) {
sleep_manager_unlock_deep_sleep();
_callback.call(event & SPI_EVENT_ALL);
}
#if TRANSACTION_QUEUE_SIZE_SPI
if (event & (SPI_EVENT_ALL | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE)) {
// SPI peripheral is free (event happend), dequeue transaction
dequeue_transaction();
}
#endif
}
#endif
} // namespace mbed
#endif