mbed-os/TESTS/mbed_hal/sleep/sleep_test_utils.h

119 lines
3.4 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2017 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @addtogroup hal_sleep
* @{
* @defgroup hal_sleep_test_util Tests
* Tests of the sleep HAL.
* @{
*/
#ifndef MBED_SLEEP_TEST_UTILS_H
#define MBED_SLEEP_TEST_UTILS_H
#include "hal/ticker_api.h"
#include "hal/us_ticker_api.h"
#include "hal/lp_ticker_api.h"
/* To prevent a loss of Greentea data, the serial buffers have to be flushed
* before the UART peripheral shutdown. The UART shutdown happens when the
* device is entering the deepsleep mode or performing a reset.
*
* With the current API, it is not possible to check if the hardware buffers
* are empty. However, it is possible to determine the time required for the
* buffers to flush.
*
* Assuming the biggest Tx FIFO of 128 bytes (as for CY8CPROTO_062_4343W)
* and a default UART config (9600, 8N1), flushing the Tx FIFO wold take:
* (1 start_bit + 8 data_bits + 1 stop_bit) * 128 * 1000 / 9600 = 133.3 ms.
* To be on the safe side, set the wait time to 150 ms.
*/
#define SERIAL_FLUSH_TIME_MS 150
#define US_PER_S 1000000
unsigned int ticks_to_us(unsigned int ticks, unsigned int freq)
{
return (unsigned int)((unsigned long long) ticks * US_PER_S / freq);
}
unsigned int us_to_ticks(unsigned int us, unsigned int freq)
{
return (unsigned int)((unsigned long long) us * freq / US_PER_S);
}
unsigned int overflow_protect(unsigned int timestamp, unsigned int ticker_width)
{
unsigned int counter_mask = ((1 << ticker_width) - 1);
return (timestamp & counter_mask);
}
bool compare_timestamps(unsigned int delta_ticks, unsigned int ticker_width, unsigned int expected, unsigned int actual)
{
const unsigned int counter_mask = ((1 << ticker_width) - 1);
const unsigned int lower_bound = ((expected - delta_ticks) & counter_mask);
const unsigned int upper_bound = ((expected + delta_ticks) & counter_mask);
if (lower_bound < upper_bound) {
if (actual >= lower_bound && actual <= upper_bound) {
return true;
} else {
return false;
}
} else {
if ((actual >= lower_bound && actual <= counter_mask) || (actual >= 0 && actual <= upper_bound)) {
return true;
} else {
return false;
}
}
}
void busy_wait_ms(int ms)
{
const ticker_info_t *info = us_ticker_get_info();
uint32_t mask = (1 << info->bits) - 1;
int delay = (int)((uint64_t) ms * info->frequency / 1000);
uint32_t prev = us_ticker_read();
while (delay > 0) {
uint32_t next = us_ticker_read();
delay -= (next - prev) & mask;
prev = next;
}
}
void us_ticker_isr(const ticker_data_t *const ticker_data)
{
us_ticker_clear_interrupt();
}
#if DEVICE_LPTICKER
void lp_ticker_isr(const ticker_data_t *const ticker_data)
{
lp_ticker_clear_interrupt();
}
#endif
#endif
/** @}*/
/** @}*/