mbed-os/targets/TARGET_NXP/TARGET_MCUXpresso_MCUS/api/spi_api.c

192 lines
6.0 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <math.h>
#include "mbed_assert.h"
#include "spi_api.h"
#if DEVICE_SPI
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "fsl_spi.h"
#include "PeripheralPins.h"
/* Array of SPI peripheral base address. */
static SPI_Type *const spi_address[] = SPI_BASE_PTRS;
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
// determine the SPI to use
uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
obj->instance = pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)obj->instance != NC);
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if (ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
}
void spi_free(spi_t *obj)
{
SPI_Deinit(spi_address[obj->instance]);
}
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
spi_master_config_t master_config;
spi_slave_config_t slave_config;
/* Bits: values between 4 and 16 are valid */
MBED_ASSERT(bits >= 4 && bits <= 16);
obj->bits = bits;
if (slave) {
/* Slave config */
SPI_SlaveGetDefaultConfig(&slave_config);
slave_config.dataWidth = (spi_data_width_t)(bits - 1);
slave_config.polarity = (mode & 0x2) ? kSPI_ClockPolarityActiveLow : kSPI_ClockPolarityActiveHigh;
slave_config.phase = (mode & 0x1) ? kSPI_ClockPhaseSecondEdge : kSPI_ClockPhaseFirstEdge;
SPI_SlaveInit(spi_address[obj->instance], &slave_config);
} else {
/* Master config */
SPI_MasterGetDefaultConfig(&master_config);
master_config.dataWidth = (spi_data_width_t)(bits - 1);
master_config.polarity = (mode & 0x2) ? kSPI_ClockPolarityActiveLow : kSPI_ClockPolarityActiveHigh;
master_config.phase = (mode & 0x1) ? kSPI_ClockPhaseSecondEdge : kSPI_ClockPhaseFirstEdge;
master_config.direction = kSPI_MsbFirst;
switch (obj->instance) {
case 0:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM0);
RESET_PeripheralReset(kFC0_RST_SHIFT_RSTn);
break;
case 1:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM1);
RESET_PeripheralReset(kFC1_RST_SHIFT_RSTn);
break;
case 2:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM2);
RESET_PeripheralReset(kFC2_RST_SHIFT_RSTn);
break;
case 3:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM3);
RESET_PeripheralReset(kFC3_RST_SHIFT_RSTn);
break;
case 4:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM4);
RESET_PeripheralReset(kFC4_RST_SHIFT_RSTn);
break;
case 5:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM5);
RESET_PeripheralReset(kFC5_RST_SHIFT_RSTn);
break;
case 6:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM6);
RESET_PeripheralReset(kFC6_RST_SHIFT_RSTn);
break;
case 7:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM7);
RESET_PeripheralReset(kFC7_RST_SHIFT_RSTn);
break;
#if (FSL_FEATURE_SOC_FLEXCOMM_COUNT > 8U)
case 8:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM8);
RESET_PeripheralReset(kFC8_RST_SHIFT_RSTn);
break;
#endif
#if (FSL_FEATURE_SOC_FLEXCOMM_COUNT > 9U)
case 9:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM9);
RESET_PeripheralReset(kFC9_RST_SHIFT_RSTn);
break;
#endif
}
SPI_MasterInit(spi_address[obj->instance], &master_config, 12000000);
}
}
void spi_frequency(spi_t *obj, int hz)
{
SPI_MasterSetBaud(spi_address[obj->instance], (uint32_t)hz, 12000000);
}
static inline int spi_readable(spi_t * obj)
{
return (SPI_GetStatusFlags(spi_address[obj->instance]) & kSPI_RxNotEmptyFlag);
}
int spi_master_write(spi_t *obj, int value)
{
uint32_t rx_data;
SPI_WriteData(spi_address[obj->instance], (uint16_t)value, kSPI_FrameAssert);
// wait rx buffer full
while (!spi_readable(obj));
rx_data = SPI_ReadData(spi_address[obj->instance]);
return rx_data & 0xffff;
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill) {
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
int spi_slave_receive(spi_t *obj)
{
return spi_readable(obj);
}
int spi_slave_read(spi_t *obj)
{
uint32_t rx_data;
while (!spi_readable(obj));
rx_data = SPI_ReadData(spi_address[obj->instance]);
return rx_data & 0xffff;
}
void spi_slave_write(spi_t *obj, int value)
{
SPI_WriteData(spi_address[obj->instance], (uint16_t)value, 0);
}
#endif