mbed-os/targets/TARGET_NXP/TARGET_MCUXpresso_MCUS/api/serial_api.c

385 lines
10 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "serial_api.h"
#if DEVICE_SERIAL
// math.h required for floating point operations for baud rate calculation
#include <math.h>
#include "mbed_assert.h"
#include <string.h>
#include "cmsis.h"
#include "pinmap.h"
#include "fsl_usart.h"
#include "PeripheralPins.h"
#include "clock_config.h"
static uint32_t serial_irq_ids[FSL_FEATURE_SOC_USART_COUNT] = {0};
static uart_irq_handler irq_handler;
/* Array of UART peripheral base address. */
static USART_Type *const uart_addrs[] = USART_BASE_PTRS;
int stdio_uart_inited = 0;
serial_t stdio_uart;
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
obj->index = pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT((int)obj->index != NC);
usart_config_t config;
switch (obj->index) {
case 0:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM0);
RESET_PeripheralReset(kFC0_RST_SHIFT_RSTn);
break;
case 1:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM1);
RESET_PeripheralReset(kFC1_RST_SHIFT_RSTn);
break;
case 2:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM2);
RESET_PeripheralReset(kFC2_RST_SHIFT_RSTn);
break;
case 3:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM3);
RESET_PeripheralReset(kFC3_RST_SHIFT_RSTn);
break;
case 4:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM4);
RESET_PeripheralReset(kFC4_RST_SHIFT_RSTn);
break;
case 5:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM5);
RESET_PeripheralReset(kFC5_RST_SHIFT_RSTn);
break;
case 6:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM6);
RESET_PeripheralReset(kFC6_RST_SHIFT_RSTn);
break;
case 7:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM7);
RESET_PeripheralReset(kFC7_RST_SHIFT_RSTn);
break;
#if (FSL_FEATURE_SOC_FLEXCOMM_COUNT > 8U)
case 8:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM8);
RESET_PeripheralReset(kFC8_RST_SHIFT_RSTn);
break;
#endif
#if (FSL_FEATURE_SOC_FLEXCOMM_COUNT > 9U)
case 9:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM9);
RESET_PeripheralReset(kFC9_RST_SHIFT_RSTn);
break;
#endif
}
USART_GetDefaultConfig(&config);
config.baudRate_Bps = 9600;
config.enableTx = true;
config.enableRx = true;
USART_Init(uart_addrs[obj->index], &config, 12000000);
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
if (tx != NC) {
pin_mode(tx, PullUp);
}
if (rx != NC) {
pin_mode(rx, PullUp);
}
if (obj->index == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj)
{
USART_Deinit(uart_addrs[obj->index]);
serial_irq_ids[obj->index] = 0;
}
void serial_baud(serial_t *obj, int baudrate)
{
USART_SetBaudRate(uart_addrs[obj->index], (uint32_t)baudrate, 12000000);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
USART_Type *base = uart_addrs[obj->index];
uint8_t temp;
/* Set bit count and parity mode. */
temp = base->CFG & ~(USART_CFG_PARITYSEL_MASK | USART_CFG_DATALEN_MASK | USART_CFG_STOPLEN_MASK);
if (parity != ParityNone)
{
/* Enable Parity */
if (parity == ParityOdd) {
temp |= USART_CFG_PARITYSEL(3U);
} else if (parity == ParityEven) {
temp |= USART_CFG_PARITYSEL(2U);
} else {
// Hardware does not support forced parity
MBED_ASSERT(0);
}
}
/* Set stop bits */
if (stop_bits == 2) {
temp |= USART_CFG_STOPLEN(1U);
}
/* Set Data size */
if (data_bits == 8) {
temp |= USART_CFG_DATALEN(1U);
} else {
temp |= USART_CFG_DATALEN(2U);
}
base->CFG = temp;
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static inline void uart_irq(uint32_t transmit_empty, uint32_t receive_full, uint32_t index)
{
if (serial_irq_ids[index] != 0) {
if (transmit_empty)
irq_handler(serial_irq_ids[index], TxIrq);
if (receive_full)
irq_handler(serial_irq_ids[index], RxIrq);
}
}
void uart0_irq()
{
uint32_t status_flags = USART0->FIFOSTAT;
uart_irq((status_flags & kUSART_TxFifoEmptyFlag), (status_flags & kUSART_RxFifoFullFlag), 0);
}
void uart1_irq()
{
uint32_t status_flags = USART1->FIFOSTAT;
uart_irq((status_flags & kUSART_TxFifoEmptyFlag), (status_flags & kUSART_RxFifoFullFlag), 1);
}
void uart2_irq()
{
uint32_t status_flags = USART2->FIFOSTAT;
uart_irq((status_flags & kUSART_TxFifoEmptyFlag), (status_flags & kUSART_RxFifoFullFlag), 2);
}
void uart3_irq()
{
uint32_t status_flags = USART3->FIFOSTAT;
uart_irq((status_flags & kUSART_TxFifoEmptyFlag), (status_flags & kUSART_RxFifoFullFlag), 3);
}
void uart4_irq()
{
uint32_t status_flags = USART4->FIFOSTAT;
uart_irq((status_flags & kUSART_TxFifoEmptyFlag), (status_flags & kUSART_RxFifoFullFlag), 4);
}
void uart5_irq()
{
uint32_t status_flags = USART5->FIFOSTAT;
uart_irq((status_flags & kUSART_TxFifoEmptyFlag), (status_flags & kUSART_RxFifoFullFlag), 5);
}
void uart6_irq()
{
uint32_t status_flags = USART6->FIFOSTAT;
uart_irq((status_flags & kUSART_TxFifoEmptyFlag), (status_flags & kUSART_RxFifoFullFlag), 6);
}
void uart7_irq()
{
uint32_t status_flags = USART7->FIFOSTAT;
uart_irq((status_flags & kUSART_TxFifoEmptyFlag), (status_flags & kUSART_RxFifoFullFlag), 7);
}
#if (FSL_FEATURE_SOC_FLEXCOMM_COUNT > 8U)
void uart8_irq()
{
uint32_t status_flags = USART8->FIFOSTAT;
uart_irq((status_flags & kUSART_TxFifoEmptyFlag), (status_flags & kUSART_RxFifoFullFlag), 8);
}
#endif
#if (FSL_FEATURE_SOC_FLEXCOMM_COUNT > 9U)
void uart9_irq()
{
uint32_t status_flags = USART9->FIFOSTAT;
uart_irq((status_flags & kUSART_TxFifoEmptyFlag), (status_flags & kUSART_RxFifoFullFlag), 9);
}
#endif
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
IRQn_Type uart_irqs[] = USART_IRQS;
uint32_t vector = 0;
switch (obj->index) {
case 0:
vector = (uint32_t)&uart0_irq;
break;
case 1:
vector = (uint32_t)&uart1_irq;
break;
case 2:
vector = (uint32_t)&uart2_irq;
break;
case 3:
vector = (uint32_t)&uart3_irq;
break;
case 4:
vector = (uint32_t)&uart4_irq;
break;
case 5:
vector = (uint32_t)&uart5_irq;
break;
case 6:
vector = (uint32_t)&uart6_irq;
break;
case 7:
vector = (uint32_t)&uart7_irq;
break;
#if (FSL_FEATURE_SOC_FLEXCOMM_COUNT > 8U)
case 8:
vector = (uint32_t)&uart8_irq;
break;
#endif
#if (FSL_FEATURE_SOC_FLEXCOMM_COUNT > 9U)
case 9:
vector = (uint32_t)&uart9_irq;
break;
#endif
default:
break;
}
if (enable) {
switch (irq) {
case RxIrq:
USART_EnableInterrupts(uart_addrs[obj->index], kUSART_RxLevelInterruptEnable);
break;
case TxIrq:
USART_EnableInterrupts(uart_addrs[obj->index], kUSART_TxLevelInterruptEnable);
break;
default:
break;
}
NVIC_SetVector(uart_irqs[obj->index], vector);
NVIC_EnableIRQ(uart_irqs[obj->index]);
} else { // disable
int all_disabled = 0;
SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
switch (irq) {
case RxIrq:
USART_DisableInterrupts(uart_addrs[obj->index], kUSART_RxLevelInterruptEnable);
break;
case TxIrq:
USART_DisableInterrupts(uart_addrs[obj->index], kUSART_TxLevelInterruptEnable);
break;
default:
break;
}
switch (other_irq) {
case RxIrq:
all_disabled = (((uart_addrs[obj->index]->FIFOINTENSET) & kUSART_RxLevelInterruptEnable) == 0);
break;
case TxIrq:
all_disabled = (((uart_addrs[obj->index]->FIFOINTENSET) & kUSART_TxLevelInterruptEnable)== 0);
break;
default:
break;
}
if (all_disabled)
NVIC_DisableIRQ(uart_irqs[obj->index]);
}
}
int serial_getc(serial_t *obj)
{
while (!serial_readable(obj));
uint8_t data;
data = USART_ReadByte(uart_addrs[obj->index]);
return data;
}
void serial_putc(serial_t *obj, int c)
{
while (!serial_writable(obj));
USART_WriteByte(uart_addrs[obj->index], (uint8_t)c);
}
int serial_readable(serial_t *obj)
{
uint32_t status_flags = USART_GetStatusFlags(uart_addrs[obj->index]);
return (status_flags & kUSART_RxFifoNotEmptyFlag);
}
int serial_writable(serial_t *obj)
{
uint32_t status_flags = USART_GetStatusFlags(uart_addrs[obj->index]);
return (status_flags & kUSART_TxFifoNotFullFlag);
}
void serial_clear(serial_t *obj)
{
}
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj)
{
uart_addrs[obj->index]->CTL |= USART_CTL_TXBRKEN_MASK;
}
void serial_break_clear(serial_t *obj)
{
uart_addrs[obj->index]->CTL &= ~USART_CTL_TXBRKEN_MASK;
}
#endif