mbed-os/targets/TARGET_NXP/TARGET_MCUXpresso_MCUS/api/i2c_api.c

300 lines
8.2 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "i2c_api.h"
#if DEVICE_I2C
#include "cmsis.h"
#include "pinmap.h"
#include "fsl_i2c.h"
#include "PeripheralPins.h"
/* 7 bit IIC addr - R/W flag not included */
static int i2c_address = 0;
/* Array of I2C peripheral base address. */
static I2C_Type *const i2c_addrs[] = I2C_BASE_PTRS;
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{
uint32_t i2c_sda = pinmap_peripheral(sda, PinMap_I2C_SDA);
uint32_t i2c_scl = pinmap_peripheral(scl, PinMap_I2C_SCL);
obj->instance = pinmap_merge(i2c_sda, i2c_scl);
obj->next_repeated_start = 0;
MBED_ASSERT((int)obj->instance != NC);
i2c_master_config_t master_config;
switch (obj->instance) {
case 0:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM0);
RESET_PeripheralReset(kFC0_RST_SHIFT_RSTn);
break;
case 1:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM1);
RESET_PeripheralReset(kFC1_RST_SHIFT_RSTn);
break;
case 2:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM2);
RESET_PeripheralReset(kFC2_RST_SHIFT_RSTn);
break;
case 3:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM3);
RESET_PeripheralReset(kFC3_RST_SHIFT_RSTn);
break;
case 4:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM4);
RESET_PeripheralReset(kFC4_RST_SHIFT_RSTn);
break;
case 5:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM5);
RESET_PeripheralReset(kFC5_RST_SHIFT_RSTn);
break;
case 6:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM6);
RESET_PeripheralReset(kFC6_RST_SHIFT_RSTn);
break;
case 7:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM7);
RESET_PeripheralReset(kFC7_RST_SHIFT_RSTn);
break;
#if (FSL_FEATURE_SOC_FLEXCOMM_COUNT > 8U)
case 8:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM8);
RESET_PeripheralReset(kFC8_RST_SHIFT_RSTn);
break;
#endif
#if (FSL_FEATURE_SOC_FLEXCOMM_COUNT > 9U)
case 9:
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM9);
RESET_PeripheralReset(kFC9_RST_SHIFT_RSTn);
break;
#endif
}
I2C_MasterGetDefaultConfig(&master_config);
I2C_MasterInit(i2c_addrs[obj->instance], &master_config, 12000000);
pinmap_pinout(sda, PinMap_I2C_SDA);
pinmap_pinout(scl, PinMap_I2C_SCL);
}
int i2c_start(i2c_t *obj)
{
I2C_Type *base = i2c_addrs[obj->instance];
uint32_t status;
do
{
status = I2C_GetStatusFlags(base);
} while ((status & I2C_STAT_MSTPENDING_MASK) == 0);
/* Clear controller state. */
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTARBLOSS_MASK | I2C_STAT_MSTSTSTPERR_MASK);
/* Start the transfer */
base->MSTCTL = I2C_MSTCTL_MSTSTART_MASK;
return 0;
}
int i2c_stop(i2c_t *obj)
{
I2C_Type *base = i2c_addrs[obj->instance];
uint32_t status;
do
{
status = I2C_GetStatusFlags(base);
} while ((status & I2C_STAT_MSTPENDING_MASK) == 0);
/* Clear controller state. */
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTARBLOSS_MASK | I2C_STAT_MSTSTSTPERR_MASK);
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
return 0;
}
void i2c_frequency(i2c_t *obj, int hz)
{
I2C_MasterSetBaudRate(i2c_addrs[obj->instance], hz, 12000000);
}
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
{
I2C_Type *base = i2c_addrs[obj->instance];
i2c_master_transfer_t master_xfer;
i2c_address = address >> 1;
memset(&master_xfer, 0, sizeof(master_xfer));
master_xfer.slaveAddress = address >> 1;
master_xfer.direction = kI2C_Read;
master_xfer.data = (uint8_t *)data;
master_xfer.dataSize = length;
if (obj->next_repeated_start) {
master_xfer.flags |= kI2C_TransferRepeatedStartFlag;
}
if (!stop) {
master_xfer.flags |= kI2C_TransferNoStopFlag;
}
obj->next_repeated_start = master_xfer.flags & kI2C_TransferNoStopFlag ? 1 : 0;
/* The below function will issue a STOP signal at the end of the transfer.
* This is required by the hardware in order to receive the last byte
*/
if (I2C_MasterTransferBlocking(base, &master_xfer) != kStatus_Success) {
return I2C_ERROR_NO_SLAVE;
}
return length;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
{
I2C_Type *base = i2c_addrs[obj->instance];
i2c_master_transfer_t master_xfer;
if (length == 0) {
if (I2C_MasterStart(base, address >> 1, kI2C_Write) != kStatus_Success) {
return I2C_ERROR_NO_SLAVE;
}
if (((I2C_GetStatusFlags(base) & I2C_STAT_MSTSTATE_MASK) >> I2C_STAT_MSTSTATE_SHIFT) == I2C_STAT_MSTCODE_NACKADR) {
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
} else {
i2c_stop(obj);
return length;
}
}
memset(&master_xfer, 0, sizeof(master_xfer));
master_xfer.slaveAddress = address >> 1;
master_xfer.direction = kI2C_Write;
master_xfer.data = (uint8_t *)data;
master_xfer.dataSize = length;
if (obj->next_repeated_start) {
master_xfer.flags |= kI2C_TransferRepeatedStartFlag;
}
if (!stop) {
master_xfer.flags |= kI2C_TransferNoStopFlag;
}
obj->next_repeated_start = master_xfer.flags & kI2C_TransferNoStopFlag ? 1 : 0;
if (I2C_MasterTransferBlocking(base, &master_xfer) != kStatus_Success) {
return I2C_ERROR_NO_SLAVE;
}
return length;
}
void i2c_reset(i2c_t *obj)
{
i2c_stop(obj);
}
int i2c_byte_read(i2c_t *obj, int last)
{
uint8_t data;
I2C_Type *base = i2c_addrs[obj->instance];
i2c_master_transfer_t master_xfer;
memset(&master_xfer, 0, sizeof(master_xfer));
master_xfer.slaveAddress = i2c_address;
master_xfer.direction = kI2C_Read;
master_xfer.data = &data;
master_xfer.dataSize = 1;
if (I2C_MasterTransferBlocking(base, &master_xfer) != kStatus_Success) {
return I2C_ERROR_NO_SLAVE;
}
return data;
}
int i2c_byte_write(i2c_t *obj, int data)
{
status_t ret_value;
ret_value = I2C_MasterWriteBlocking(i2c_addrs[obj->instance], (uint8_t *)(&data), 1, kI2C_TransferNoStopFlag);
if (ret_value == kStatus_Success) {
return 1;
} else if (ret_value == kStatus_I2C_Nak) {
return 0;
} else {
return 2;
}
}
#if DEVICE_I2CSLAVE
void i2c_slave_mode(i2c_t *obj, int enable_slave)
{
i2c_slave_config_t slave_config;
I2C_SlaveGetDefaultConfig(&slave_config);
slave_config.enableSlave = (bool)enable_slave;
I2C_SlaveInit(i2c_addrs[obj->instance], &slave_config, 12000000);
}
int i2c_slave_receive(i2c_t *obj)
{
uint32_t status_flags = I2C_GetStatusFlags(i2c_addrs[obj->instance]);
if (status_flags & kI2C_SlaveSelected) {
if (((status_flags >> I2C_STAT_SLVSTATE_SHIFT) & I2C_STAT_SLVSTATE_MASK) == 0x1) {
// read addressed
return 1;
} else {
// write addressed
return 3;
}
} else {
// slave not addressed
return 0;
}
}
int i2c_slave_read(i2c_t *obj, char *data, int length)
{
I2C_Type *base = i2c_addrs[obj->instance];
I2C_SlaveReadBlocking(base, (uint8_t *)data, length);
return length;
}
int i2c_slave_write(i2c_t *obj, const char *data, int length)
{
I2C_Type *base = i2c_addrs[obj->instance];
I2C_SlaveWriteBlocking(base, (uint8_t *)data, length);
return length;
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
{
if ((idx >= 0) && (idx <= 3)) {
I2C_SlaveSetAddress(i2c_addrs[obj->instance], (i2c_slave_address_register_t)idx, address, false);
}
}
#endif
#endif