mirror of https://github.com/ARMmbed/mbed-os.git
1752 lines
60 KiB
C
1752 lines
60 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32wbxx_hal_rcc.c
|
|
* @author MCD Application Team
|
|
* @brief RCC HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Reset and Clock Control (RCC) peripheral:
|
|
* + Initialization and de-initialization functions
|
|
* + Peripheral Control functions
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### RCC specific features #####
|
|
==============================================================================
|
|
[..]
|
|
After reset the device is running from Multiple Speed Internal oscillator
|
|
(4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache
|
|
and I-Cache are disabled, and all peripherals are off except internal
|
|
SRAM, Flash and JTAG.
|
|
|
|
(+) There is no prescaler on High speed (AHBs) and Low speed (APBs) busses:
|
|
all peripherals mapped on these busses are running at MSI speed.
|
|
(+) The clock for all peripherals is switched off, except the SRAM and FLASH.
|
|
(+) All GPIOs are in analog mode, except the JTAG pins which
|
|
are assigned to be used for debug purpose.
|
|
|
|
[..]
|
|
Once the device started from reset, the user application has to:
|
|
(+) Configure the clock source to be used to drive the System clock
|
|
(if the application needs higher frequency/performance)
|
|
(+) Configure the System clock frequency and Flash settings
|
|
(+) Configure the AHB and APB busses prescalers
|
|
(+) Enable the clock for the peripheral(s) to be used
|
|
(+) Configure the clock source(s) for peripherals which clocks are not
|
|
derived from the System clock (SAI1, RTC, ADC, USB/RNG, USART1, LPUART1, LPTIMx, I2Cx, SMPS)
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© Copyright (c) 2019 STMicroelectronics.
|
|
* All rights reserved.</center></h2>
|
|
*
|
|
* This software component is licensed by ST under BSD 3-Clause license,
|
|
* the "License"; You may not use this file except in compliance with the
|
|
* License. You may obtain a copy of the License at:
|
|
* opensource.org/licenses/BSD-3-Clause
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32wbxx_hal.h"
|
|
|
|
/** @addtogroup STM32WBxx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup RCC RCC
|
|
* @brief RCC HAL module driver
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_RCC_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/** @defgroup RCC_Private_Constants RCC Private Constants
|
|
* @{
|
|
*/
|
|
#define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT
|
|
#define HSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#define MSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#define LSI1_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#define LSI2_TIMEOUT_VALUE (3U) /* to be adjusted with DS */
|
|
#define HSI48_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#define PLL_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#define PLLSAI1_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#define PRESCALER_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#define LATENCY_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#define CLOCKSWITCH_TIMEOUT_VALUE (5000U) /* 5 s */
|
|
|
|
#define PLLSOURCE_NONE (0U)
|
|
#define MEGA_HZ 1000000U /* Division factor to convert Hz in Mhz */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/** @defgroup RCC_Private_Macros RCC Private Macros
|
|
* @{
|
|
*/
|
|
#define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
|
|
#define MCO1_GPIO_PORT GPIOA
|
|
#define MCO1_PIN GPIO_PIN_8
|
|
|
|
#define __MCO2_CLK_ENABLE() __HAL_RCC_GPIOB_CLK_ENABLE()
|
|
#define MCO2_GPIO_PORT GPIOB
|
|
#define MCO2_PIN GPIO_PIN_6
|
|
|
|
#define __MCO3_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
|
|
#define MCO3_GPIO_PORT GPIOA
|
|
#define MCO3_PIN GPIO_PIN_15
|
|
|
|
#define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \
|
|
(MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (uint32_t)(__HAL_RCC_PLLSOURCE__)))
|
|
|
|
#define __COUNTOF(_A_) (sizeof(_A_) / sizeof(*(_A_)))
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/** @defgroup RCC_Private_Variables RCC Private Variables
|
|
* @{
|
|
*/
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @defgroup RCC_Private_Functions RCC Private Functions
|
|
* @{
|
|
*/
|
|
static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSI_Range);
|
|
static HAL_StatusTypeDef RCC_SetFlashLatency(uint32_t Flash_ClkSrcFreq, uint32_t VCORE_Voltage);
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Exported functions --------------------------------------------------------*/
|
|
|
|
/** @defgroup RCC_Exported_Functions RCC Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..]
|
|
This section provides functions allowing to configure the internal and external oscillators
|
|
(HSE, HSI, LSE, MSI, LSI1, LSI2, PLL, CSS and MCO) and the System busses clocks (SYSCLK, HCLK1, HCLK2, HCLK4, PCLK1
|
|
and PCLK2).
|
|
|
|
[..] Internal/external clock and PLL configuration
|
|
(+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through
|
|
the PLL as System clock source.
|
|
|
|
(+) MSI (Mutiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ.
|
|
It can be used to generate the clock for the USB FS (48 MHz).
|
|
The number of flash wait states is automatically adjusted when MSI range is updated with
|
|
@ref HAL_RCC_OscConfig() and the MSI is used as System clock source.
|
|
|
|
(+) LSI1/LSI2 (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC
|
|
clock source.
|
|
|
|
(+) HSE (high-speed external): 32 MHz crystal oscillator used directly or
|
|
through the PLL as System clock source. Can be used also optionally as RTC clock source.
|
|
|
|
(+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source
|
|
or the RF system Auto-wakeup from Stop and Standby modes.
|
|
|
|
(+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
|
|
(++) The first output is used to generate the high speed system clock (up to 64MHz).
|
|
(++) The second output is used to generate the clock for the USB FS (48 MHz),
|
|
the random analog generator (<=48 MHz)
|
|
(++) The third output is used to generate an accurate clock to achieve
|
|
high-quality audio performance on SAI interface.
|
|
|
|
(+) PLLSAI1 (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
|
|
(++) The first output is used to generate SAR ADC clock.
|
|
(++) The second output is used to generate the clock for the USB FS (48 MHz),
|
|
the random analog generator (<=48 MHz).
|
|
(++) The Third output is used to generate an accurate clock to achieve
|
|
high-quality audio performance on SAI interface.
|
|
|
|
|
|
(+) CSS (Clock security system): once enabled, if a HSE clock failure occurs
|
|
(HSE used directly or through PLL as System clock source), the System clock
|
|
is automatically switched to MSI or the HSI oscillator (depending on the
|
|
STOPWUCK configuration) and an interrupt is generated if enabled.
|
|
The interrupt is linked to the CPU1 and CPU2 NMI (Non-Maskable Interrupt) exception vector.
|
|
|
|
(+) LSECSS: once enabled, if a LSE clock failure occurs, the LSE
|
|
clock is no longer supplied to the RTC but no hardware action is made to the registers. If the
|
|
MSI was in PLL-mode, this mode is disabled.
|
|
In Standby mode a wakeup is generated. In other modes an interrupt can be sent to wakeup
|
|
the software
|
|
|
|
(+) MCO (microcontroller clock output): used to output MSI, LSI1, LSI2, HSI, LSE, HSE (before and
|
|
after stabilization), SYSCLK, HSI48 or main PLL clock (through a configurable prescaler) on PA8, PB6 & PA15 pins.
|
|
|
|
[..] System, AHB and APB busses clocks configuration
|
|
(+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI,
|
|
HSE and main PLL.
|
|
The AHB clock (HCLK1) is derived from System clock through configurable
|
|
prescaler and used to clock the CPU, memory and peripherals mapped
|
|
on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
|
|
from AHB clock through configurable prescalers and used to clock
|
|
the peripherals mapped on these busses. You can use
|
|
"@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
|
|
The AHB4 clock (HCLK4) is derived from System clock through configurable
|
|
prescaler and used to clock the FLASH
|
|
|
|
-@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
|
|
|
|
(+@) SAI: the SAI clock can be derived either from a specific PLL (PLLSAI1) or (PLLSYS) or
|
|
from an external clock mapped on the SAI_CKIN pin.
|
|
You have to use @ref HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
|
|
(+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
|
|
divided by 32.
|
|
You have to use @ref __HAL_RCC_RTC_ENABLE() and @ref HAL_RCCEx_PeriphCLKConfig() function
|
|
to configure this clock.
|
|
(+@) USB FS and RNG: USB FS requires a frequency equal to 48 MHz
|
|
to work correctly, while RNG peripherals requires a frequency
|
|
equal or lower than to 48 MHz. This clock is derived of the main PLL or PLLSAI1
|
|
through PLLQ divider. You have to enable the peripheral clock and use
|
|
@ref HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
|
|
(+@) IWDG clock which is always the LSI clock.
|
|
|
|
|
|
(+) The maximum frequency of the SYSCLK, HCLK1, HCLK4, PCLK1 and PCLK2 is 64 MHz.
|
|
The maximum frequency of the HCLK2 is 32 MHz.
|
|
The clock source frequency should be adapted depending on the device voltage range
|
|
as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter.
|
|
|
|
@endverbatim
|
|
|
|
Table 1. HCLK4 clock frequency.
|
|
+-------------------------------------------------------+
|
|
| Latency | HCLK4 clock frequency (MHz) |
|
|
| |-------------------------------------|
|
|
| | voltage range 1 | voltage range 2 |
|
|
| | 1.2 V | 1.0 V |
|
|
|-----------------|------------------|------------------|
|
|
|0WS(1 CPU cycles)| HCLK4 <= 18 | HCLK4 <= 6 |
|
|
|-----------------|------------------|------------------|
|
|
|1WS(2 CPU cycles)| HCLK4 <= 36 | HCLK4 <= 12 |
|
|
|-----------------|------------------|------------------|
|
|
|2WS(3 CPU cycles)| HCLK4 <= 54 | HCLK4 <= 16 |
|
|
|-----------------|------------------|------------------|
|
|
|3WS(4 CPU cycles)| HCLK4 <= 64 | HCLK4 <= n.a. |
|
|
|-----------------|------------------|------------------|
|
|
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Reset the RCC clock configuration to the default reset state.
|
|
* @note The default reset state of the clock configuration is given below:
|
|
* - MSI ON and used as system clock source
|
|
* - HSE, HSI, PLL, PLLSAI1
|
|
* - HCLK1, HCLK2, HCLK4, PCLK1 and PCLK2 prescalers set to 1.
|
|
* - CSS, MCO OFF
|
|
* - All interrupts disabled
|
|
* @note This function doesn't modify the configuration of the
|
|
* - Peripheral clocks
|
|
* - LSI, LSE and RTC clocks
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_DeInit(void)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Set MSION bit */
|
|
LL_RCC_MSI_Enable();
|
|
|
|
/* Wait till MSI is ready */
|
|
while (LL_RCC_MSI_IsReady() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Set MSIRANGE default value */
|
|
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_6);
|
|
|
|
/* Set MSITRIM bits to the reset value*/
|
|
LL_RCC_MSI_SetCalibTrimming(0);
|
|
|
|
/* Set HSITRIM bits to the reset value*/
|
|
LL_RCC_HSI_SetCalibTrimming(0x40U);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Reset CFGR register (MSI is selected as system clock source) */
|
|
CLEAR_REG(RCC->CFGR);
|
|
|
|
/* Wait till MSI is ready */
|
|
while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Reset HSION, HSIKERON, HSIASFS, HSEON, PLLON, PLLSAI11ON, HSEPRE bits */
|
|
CLEAR_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSIKERON | RCC_CR_HSIASFS | RCC_CR_HSEON | RCC_CR_HSEPRE | RCC_CR_PLLON | RCC_CR_PLLSAI1ON);
|
|
|
|
/* Reset HSEBYP bit once HSE is OFF */
|
|
LL_RCC_HSE_DisableBypass();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while (LL_RCC_PLL_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* once PLL is OFF, reset PLLCFGR register to default value */
|
|
WRITE_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLR_0 | RCC_PLLCFGR_PLLQ_0 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLN_0);
|
|
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while (LL_RCC_PLLSAI1_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* once PLLSAI1 is OFF, reset PLLSAI1CFGR register to default value */
|
|
WRITE_REG(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLR_0 | RCC_PLLSAI1CFGR_PLLQ_0 | RCC_PLLSAI1CFGR_PLLP_1 | RCC_PLLSAI1CFGR_PLLN_0);
|
|
|
|
/* Disable all interrupts */
|
|
CLEAR_REG(RCC->CIER);
|
|
|
|
/* Clear all interrupt flags */
|
|
WRITE_REG(RCC->CICR, 0xFFFFFFFFU);
|
|
|
|
/* EXTCFGR reset*/
|
|
LL_RCC_WriteReg(EXTCFGR, 0x00030000U);
|
|
|
|
/* Update the SystemCoreClock global variable */
|
|
SystemCoreClock = MSI_VALUE;
|
|
|
|
/* Adapt Systick interrupt period */
|
|
if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
return HAL_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the RCC Oscillators according to the specified parameters in the
|
|
* @ref RCC_OscInitTypeDef.
|
|
* @param RCC_OscInitStruct pointer to a @ref RCC_OscInitTypeDef structure that
|
|
* contains the configuration information for the RCC Oscillators.
|
|
* @note The PLL is not disabled when used as system clock.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Check Null pointer */
|
|
if(RCC_OscInitStruct == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
|
|
|
|
/*----------------------------- MSI Configuration --------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
|
|
assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
|
|
assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));
|
|
|
|
/* When the MSI is used as system clock it will not be disabled */
|
|
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE();
|
|
if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_MSI) ||
|
|
((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_MSI)))
|
|
{
|
|
if ((LL_RCC_MSI_IsReady() != 0U) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
/* Otherwise, just the calibration and MSI range change are allowed */
|
|
else
|
|
{
|
|
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
|
|
must be correctly programmed according to the frequency of the AHB4 clock
|
|
and the supply voltage of the device. */
|
|
if (RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE())
|
|
{
|
|
/* First increase number of wait states update if necessary */
|
|
if (RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Selects the Multiple Speed oscillator (MSI) clock range .*/
|
|
__HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
|
|
/* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
|
|
__HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
|
|
}
|
|
else
|
|
{
|
|
/* Else, keep current flash latency while decreasing applies */
|
|
/* Selects the Multiple Speed oscillator (MSI) clock range .*/
|
|
__HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
|
|
/* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
|
|
__HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
|
|
|
|
/* Decrease number of wait states update if necessary */
|
|
if (RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/* Update the SystemCoreClock global variable */
|
|
SystemCoreClockUpdate();
|
|
if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check the MSI State */
|
|
if (RCC_OscInitStruct->MSIState != RCC_MSI_OFF)
|
|
{
|
|
/* Enable the Internal High Speed oscillator (MSI). */
|
|
__HAL_RCC_MSI_ENABLE();
|
|
|
|
/* Get timeout */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till MSI is ready */
|
|
while (LL_RCC_MSI_IsReady() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Selects the Multiple Speed oscillator (MSI) clock range .*/
|
|
__HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
|
|
/* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
|
|
__HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal High Speed oscillator (MSI). */
|
|
__HAL_RCC_MSI_DISABLE();
|
|
|
|
/* Get timeout */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till MSI is ready */
|
|
while (LL_RCC_MSI_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------- HSE Configuration ------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
|
|
|
|
/* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
|
|
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE();
|
|
if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE) ||
|
|
((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_HSE)))
|
|
{
|
|
if ((LL_RCC_HSE_IsReady() != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set the new HSE configuration ---------------------------------------*/
|
|
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
|
|
|
|
/* Check the HSE State */
|
|
if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSE is ready */
|
|
while (LL_RCC_HSE_IsReady() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSE is disabled */
|
|
while (LL_RCC_HSE_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*----------------------------- HSI Configuration --------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
|
|
assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
|
|
|
|
/* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
|
|
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE();
|
|
if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI) ||
|
|
((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_HSI)))
|
|
{
|
|
/* When HSI is used as system clock it will not be disabled */
|
|
if ((LL_RCC_HSI_IsReady() != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
/* Otherwise, just the calibration is allowed */
|
|
else
|
|
{
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check the HSI State */
|
|
if (RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
|
|
{
|
|
/* Enable the Internal High Speed oscillator (HSI). */
|
|
__HAL_RCC_HSI_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI is ready */
|
|
while (LL_RCC_HSI_IsReady() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal High Speed oscillator (HSI). */
|
|
__HAL_RCC_HSI_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI is disabled */
|
|
while (LL_RCC_HSI_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------ LSI Configuration (LSI1 or LSI2) -------------------------*/
|
|
|
|
if ((((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI1) == RCC_OSCILLATORTYPE_LSI1) || \
|
|
(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI2) == RCC_OSCILLATORTYPE_LSI2))
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
|
|
|
|
/* Check the LSI State */
|
|
if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
|
|
{
|
|
/*------------------------------ LSI2 selected by default (when Switch ON) -------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI2) == RCC_OSCILLATORTYPE_LSI2)
|
|
{
|
|
assert_param(IS_RCC_LSI2_CALIBRATION_VALUE(RCC_OscInitStruct->LSI2CalibrationValue));
|
|
|
|
/* 1. Check LSI1 state and enable if required */
|
|
if (LL_RCC_LSI1_IsReady() == 0U)
|
|
{
|
|
/* This is required to enable LSI1 before enabling LSI2 */
|
|
__HAL_RCC_LSI1_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI1 is ready */
|
|
while(LL_RCC_LSI1_IsReady() == 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* 2. Enable the Internal Low Speed oscillator (LSI2) and set trimming value */
|
|
__HAL_RCC_LSI2_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI2 is ready */
|
|
while (LL_RCC_LSI2_IsReady() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Adjusts the Internal Low Spee oscillator (LSI2) calibration value */
|
|
__HAL_RCC_LSI2_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->LSI2CalibrationValue);
|
|
|
|
/* 3. Disable LSI1 */
|
|
|
|
/* LSI1 was initially not enable, require to disable it */
|
|
__HAL_RCC_LSI1_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI1 is disabled */
|
|
while (LL_RCC_LSI1_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*------------------------------ LSI1 selected (only if LSI2 OFF)-------------------------*/
|
|
|
|
/* 1. Enable the Internal Low Speed oscillator (LSI1). */
|
|
__HAL_RCC_LSI1_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI1 is ready */
|
|
while (LL_RCC_LSI1_IsReady() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/*2. Switch OFF LSI2*/
|
|
|
|
/* Disable the Internal Low Speed oscillator (LSI2). */
|
|
__HAL_RCC_LSI2_DISABLE();
|
|
|
|
/* Wait till LSI2 is disabled */
|
|
while (LL_RCC_LSI2_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Disable the Internal Low Speed oscillator (LSI2). */
|
|
__HAL_RCC_LSI2_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI2 is disabled */
|
|
while (LL_RCC_LSI2_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Disable the Internal Low Speed oscillator (LSI1). */
|
|
__HAL_RCC_LSI1_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI1 is disabled */
|
|
while (LL_RCC_LSI1_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------ LSE Configuration -------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
|
|
{
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
|
|
|
|
/* Update LSE configuration in Backup Domain control register */
|
|
/* Requires to enable write access to Backup Domain of necessary */
|
|
|
|
if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
|
|
{
|
|
/* Enable write access to Backup domain */
|
|
HAL_PWR_EnableBkUpAccess();
|
|
|
|
/* Wait for Backup domain Write protection disable */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set the new LSE configuration -----------------------------------------*/
|
|
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
|
|
|
|
/* Check the LSE State */
|
|
if (RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSE is ready */
|
|
while (LL_RCC_LSE_IsReady() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSE is disabled */
|
|
while (LL_RCC_LSE_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
/*------------------------------ HSI48 Configuration -----------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
|
|
|
|
/* Check the LSI State */
|
|
if (RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
|
|
{
|
|
/* Enable the Internal Low Speed oscillator (HSI48). */
|
|
__HAL_RCC_HSI48_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI48 is ready */
|
|
while (LL_RCC_HSI48_IsReady() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal Low Speed oscillator (HSI48). */
|
|
__HAL_RCC_HSI48_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI48 is disabled */
|
|
while (LL_RCC_HSI48_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*-------------------------------- PLL Configuration -----------------------*/
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
|
|
|
|
if (RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE)
|
|
{
|
|
/* Check if the PLL is used as system clock or not */
|
|
if (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
|
|
{
|
|
if (RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
|
|
assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
|
|
assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
|
|
assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
|
|
assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
|
|
assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));
|
|
|
|
/* Disable the main PLL. */
|
|
__HAL_RCC_PLL_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while (LL_RCC_PLL_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Configure the main PLL clock source, multiplication and division factors. */
|
|
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
|
|
RCC_OscInitStruct->PLL.PLLM,
|
|
RCC_OscInitStruct->PLL.PLLN,
|
|
RCC_OscInitStruct->PLL.PLLP,
|
|
RCC_OscInitStruct->PLL.PLLQ,
|
|
RCC_OscInitStruct->PLL.PLLR);
|
|
|
|
/* Enable the main PLL. */
|
|
__HAL_RCC_PLL_ENABLE();
|
|
|
|
/* Enable PLL System Clock output. */
|
|
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while (LL_RCC_PLL_IsReady() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the main PLL. */
|
|
__HAL_RCC_PLL_DISABLE();
|
|
|
|
/* Disable all PLL outputs to save power */
|
|
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, PLLSOURCE_NONE);
|
|
|
|
__HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLL_SYSCLK | RCC_PLL_USBCLK | RCC_PLL_SAI1CLK);
|
|
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is disabled */
|
|
while (LL_RCC_PLL_IsReady() != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Do not return HAL_ERROR if request repeats the current configuration */
|
|
uint32_t pllcfgr = RCC->PLLCFGR;
|
|
|
|
if((READ_BIT(pllcfgr, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) ||
|
|
(READ_BIT(pllcfgr, RCC_PLLCFGR_PLLM) != RCC_OscInitStruct->PLL.PLLM) ||
|
|
((READ_BIT(pllcfgr, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos) != RCC_OscInitStruct->PLL.PLLN) ||
|
|
(READ_BIT(pllcfgr, RCC_PLLCFGR_PLLP) != RCC_OscInitStruct->PLL.PLLP) ||
|
|
(READ_BIT(pllcfgr, RCC_PLLCFGR_PLLQ) != RCC_OscInitStruct->PLL.PLLQ) ||
|
|
(READ_BIT(pllcfgr, RCC_PLLCFGR_PLLR) != RCC_OscInitStruct->PLL.PLLR))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the CPU, AHB and APB busses clocks according to the specified
|
|
* parameters in the RCC_ClkInitStruct.
|
|
* @param RCC_ClkInitStruct pointer to a @ref RCC_ClkInitTypeDef structure that
|
|
* contains the configuration information for the RCC peripheral.
|
|
* @param FLatency FLASH Latency
|
|
* This parameter can be one of the following values:
|
|
* @arg FLASH_LATENCY_0 FLASH 0 Latency cycle
|
|
* @arg FLASH_LATENCY_1 FLASH 1 Latency cycle
|
|
* @arg FLASH_LATENCY_2 FLASH 2 Latency cycle
|
|
* @arg FLASH_LATENCY_3 FLASH 3 Latency cycle
|
|
*
|
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
|
|
* and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
|
|
*
|
|
* @note The MSI is used by default as system clock source after
|
|
* startup from Reset, wake-up from STANDBY mode. After restart from Reset,
|
|
* the MSI frequency is set to its default value 4 MHz.
|
|
*
|
|
* @note The HSI can be selected as system clock source after
|
|
* from STOP modes or in case of failure of the HSE used directly or indirectly
|
|
* as system clock (if the Clock Security System CSS is enabled).
|
|
*
|
|
* @note A switch from one clock source to another occurs only if the target
|
|
* clock source is ready (clock stable after startup delay or PLL locked).
|
|
* If a clock source which is not yet ready is selected, the switch will
|
|
* occur when the clock source is ready.
|
|
*
|
|
* @note You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
|
|
* currently used as system clock source.
|
|
*
|
|
* @note Depending on the device voltage range, the software has to set correctly
|
|
* HPRE[3:0] bits to ensure that HCLK1 not exceed the maximum allowed frequency
|
|
* (for more details refer to section above "Initialization/de-initialization functions")
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Check Null pointer */
|
|
if(RCC_ClkInitStruct == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
|
|
assert_param(IS_FLASH_LATENCY(FLatency));
|
|
|
|
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
|
|
must be correctly programmed according to the frequency of the FLASH clock
|
|
(HCLK4) and the supply voltage of the device. */
|
|
|
|
/* Increasing the number of wait states because of higher CPU frequency */
|
|
if (FLatency > __HAL_FLASH_GET_LATENCY())
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLatency);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
while (__HAL_FLASH_GET_LATENCY() != FLatency)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*-------------------------- HCLK1 Configuration --------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
|
|
{
|
|
assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLKDivider));
|
|
LL_RCC_SetAHBPrescaler(RCC_ClkInitStruct->AHBCLKDivider);
|
|
|
|
/* HCLK1 prescaler flag when value applied */
|
|
tickstart = HAL_GetTick();
|
|
while (LL_RCC_IsActiveFlag_HPRE() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*-------------------------- HCLK2 Configuration --------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK2) == RCC_CLOCKTYPE_HCLK2)
|
|
{
|
|
assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLK2Divider));
|
|
LL_C2_RCC_SetAHBPrescaler(RCC_ClkInitStruct->AHBCLK2Divider);
|
|
|
|
/* HCLK2 prescaler flag when value applied */
|
|
tickstart = HAL_GetTick();
|
|
while (LL_RCC_IsActiveFlag_C2HPRE() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/*-------------------------- HCLK4 Configuration --------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK4) == RCC_CLOCKTYPE_HCLK4)
|
|
{
|
|
assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLK4Divider));
|
|
LL_RCC_SetAHB4Prescaler(RCC_ClkInitStruct->AHBCLK4Divider);
|
|
|
|
/* AHB shared prescaler flag when value applied */
|
|
tickstart = HAL_GetTick();
|
|
while (LL_RCC_IsActiveFlag_SHDHPRE() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*-------------------------- PCLK1 Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
|
|
{
|
|
assert_param(IS_RCC_PCLKx(RCC_ClkInitStruct->APB1CLKDivider));
|
|
LL_RCC_SetAPB1Prescaler(RCC_ClkInitStruct->APB1CLKDivider);
|
|
|
|
/* APB1 prescaler flag when value applied */
|
|
tickstart = HAL_GetTick();
|
|
while (LL_RCC_IsActiveFlag_PPRE1() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*-------------------------- PCLK2 Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
|
|
{
|
|
assert_param(IS_RCC_PCLKx(RCC_ClkInitStruct->APB2CLKDivider));
|
|
LL_RCC_SetAPB2Prescaler((RCC_ClkInitStruct->APB2CLKDivider) << 3U);
|
|
|
|
/* APB2 prescaler flag when value applied */
|
|
tickstart = HAL_GetTick();
|
|
while (LL_RCC_IsActiveFlag_PPRE2() == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*------------------------- SYSCLK Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
|
|
{
|
|
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
|
|
|
|
/* HSE is selected as System Clock Source */
|
|
if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
{
|
|
/* Check the HSE ready flag */
|
|
if (LL_RCC_HSE_IsReady() == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* PLL is selected as System Clock Source */
|
|
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
{
|
|
/* Check the PLL ready flag */
|
|
if (LL_RCC_PLL_IsReady() == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* MSI is selected as System Clock Source */
|
|
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI)
|
|
{
|
|
/* Check the MSI ready flag */
|
|
if (LL_RCC_MSI_IsReady() == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* HSI is selected as System Clock Source */
|
|
else
|
|
{
|
|
/* Check the HSI ready flag */
|
|
if (LL_RCC_HSI_IsReady() == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
}
|
|
|
|
/* apply system clock switch */
|
|
LL_RCC_SetSysClkSource(RCC_ClkInitStruct->SYSCLKSource);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* check system clock source switch status */
|
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Decreasing the number of wait states because of lower CPU frequency */
|
|
if (FLatency < __HAL_FLASH_GET_LATENCY())
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLatency);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
while (__HAL_FLASH_GET_LATENCY() != FLatency)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
/* Update the SystemCoreClock global variable */
|
|
SystemCoreClockUpdate();
|
|
/* Configure the source of time base considering new system clocks settings*/
|
|
return HAL_InitTick (HAL_GetTickPrio());
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
|
|
* @brief RCC clocks control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral Control functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to:
|
|
|
|
(+) Ouput clock to MCO pin.
|
|
(+) Retrieve current clock frequencies.
|
|
(+) Enable the Clock Security System.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Select the clock source to output on MCO1 pin(PA8) or MC02 pin (PB6) or MCO3 pin (PA15).
|
|
* @note PA8, PB6 or PA15 should be configured in alternate function mode.
|
|
* @param RCC_MCOx specifies the output direction for the clock source.
|
|
* @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8)
|
|
* @arg @ref RCC_MCO2 Clock source to output on MCO2 pin(PB6)
|
|
* @arg @ref RCC_MCO3 Clock source to output on MCO3 pin(PA15)
|
|
* @param RCC_MCOSource specifies the clock source to output.
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO
|
|
* @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee
|
|
* @arg @ref RCC_MCO1SOURCE_PLLCLK main PLL clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_LSI1 LSI1 clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_LSI2 LSI2 clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48
|
|
* @arg @ref RCC_MCO1SOURCE_HSE_BEFORE_STAB HSE clock before stabilization selected as MCO source
|
|
* @param RCC_MCODiv specifies the MCO prescaler.
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref RCC_MCODIV_1 no division applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_MCO(RCC_MCOx));
|
|
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
|
|
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
|
|
|
|
/* Common GPIO init parameters */
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
|
|
/* RCC_MCO1 */
|
|
if(RCC_MCOx == RCC_MCO1)
|
|
{
|
|
/* MCO1 Clock Enable */
|
|
__MCO1_CLK_ENABLE();
|
|
/* Configue the MCO1 pin in alternate function mode */
|
|
GPIO_InitStruct.Pin = MCO1_PIN;
|
|
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
|
|
HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
|
|
|
|
}
|
|
else if (RCC_MCOx == RCC_MCO2)
|
|
{
|
|
/* MCO2 Clock Enable */
|
|
__MCO2_CLK_ENABLE();
|
|
/* Configue the MCO2 pin in alternate function mode */
|
|
GPIO_InitStruct.Pin = MCO2_PIN;
|
|
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
|
|
HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct);
|
|
|
|
}
|
|
else
|
|
{
|
|
/* MCO3 Clock Enable */
|
|
__MCO3_CLK_ENABLE();
|
|
/* Configue the MCO3 pin in alternate function mode */
|
|
GPIO_InitStruct.Pin = MCO3_PIN;
|
|
GPIO_InitStruct.Alternate = GPIO_AF6_MCO;
|
|
HAL_GPIO_Init(MCO3_GPIO_PORT, &GPIO_InitStruct);
|
|
}
|
|
|
|
/* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */
|
|
LL_RCC_ConfigMCO(RCC_MCOSource, RCC_MCODiv);
|
|
}
|
|
|
|
/**
|
|
* @brief Return the SYSCLK frequency.
|
|
*
|
|
* @note The system computed by this function is not the real
|
|
* frequency in the chip. It is calculated based on the predefined
|
|
* constant and the selected clock source:
|
|
* @note If SYSCLK source is MSI, function returns values based on MSI range
|
|
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
|
|
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
|
|
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**),
|
|
* HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors.
|
|
* @note (*) HSI_VALUE is a constant defined in stm32wbxx_hal_conf.h file (default value
|
|
* 16 MHz) but the real value may vary depending on the variations
|
|
* in voltage and temperature.
|
|
* @note (**) HSE_VALUE is a constant defined in stm32wbxx_hal_conf.h file (default value
|
|
* 32 MHz), user has to ensure that HSE_VALUE is same as the real
|
|
* frequency of the crystal used. Otherwise, this function may
|
|
* have wrong result.
|
|
*
|
|
* @note The result of this function could be not correct when using fractional
|
|
* value for HSE crystal.
|
|
*
|
|
* @note This function can be used by the user application to compute the
|
|
* baudrate for the communication peripherals or configure other parameters.
|
|
*
|
|
* @note Each time SYSCLK changes, this function must be called to update the
|
|
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
*
|
|
*
|
|
* @retval SYSCLK frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetSysClockFreq(void)
|
|
{
|
|
uint32_t pllsource;
|
|
uint32_t sysclockfreq, pllinputfreq;
|
|
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
|
|
if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_MSI)
|
|
{
|
|
/* Retrieve MSI frequency range in HZ*/
|
|
/* MSI used as system clock source */
|
|
sysclockfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
|
|
}
|
|
else if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI)
|
|
{
|
|
/* HSI used as system clock source */
|
|
sysclockfreq = HSI_VALUE;
|
|
}
|
|
else if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE)
|
|
{
|
|
/* HSE used as system clock source */
|
|
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
|
|
{
|
|
sysclockfreq = HSE_VALUE / 2U;
|
|
}
|
|
else
|
|
{
|
|
sysclockfreq = HSE_VALUE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* PLL used as system clock source */
|
|
pllsource = LL_RCC_PLL_GetMainSource();
|
|
switch (pllsource)
|
|
{
|
|
case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
|
|
pllinputfreq = HSI_VALUE;
|
|
break;
|
|
case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
|
|
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
|
|
{
|
|
pllinputfreq = HSE_VALUE / 2U;
|
|
}
|
|
else
|
|
{
|
|
pllinputfreq = HSE_VALUE;
|
|
}
|
|
break;
|
|
case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
|
|
default:
|
|
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
|
|
break;
|
|
}
|
|
sysclockfreq = __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), LL_RCC_PLL_GetN(), LL_RCC_PLL_GetR());
|
|
}
|
|
|
|
return sysclockfreq;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the HCLK frequency.
|
|
* @retval HCLK frequency in Hz
|
|
*/
|
|
uint32_t HAL_RCC_GetHCLKFreq(void)
|
|
{
|
|
/* Get SysClock and Compute HCLK1 frequency ---------------------------*/
|
|
return ((uint32_t)(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), LL_RCC_GetAHBPrescaler())));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the HCLK2 frequency.
|
|
* @retval HCLK2 frequency in Hz
|
|
*/
|
|
uint32_t HAL_RCC_GetHCLK2Freq(void)
|
|
{
|
|
/* Get SysClock and Compute HCLK2 frequency ---------------------------*/
|
|
return ((uint32_t)(__LL_RCC_CALC_HCLK2_FREQ(HAL_RCC_GetSysClockFreq(), LL_C2_RCC_GetAHBPrescaler())));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the HCLK4 frequency.
|
|
* @retval HCLK4 frequency in Hz
|
|
*/
|
|
uint32_t HAL_RCC_GetHCLK4Freq(void)
|
|
{
|
|
/* Get SysClock and Compute AHB4 frequency ---------------------------*/
|
|
return ((uint32_t)(__LL_RCC_CALC_HCLK4_FREQ(HAL_RCC_GetSysClockFreq(), LL_RCC_GetAHB4Prescaler())));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the PCLK1 frequency.
|
|
* @note Each time PCLK1 changes, this function must be called to update the
|
|
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
|
|
* @retval PCLK1 frequency in Hz
|
|
*/
|
|
uint32_t HAL_RCC_GetPCLK1Freq(void)
|
|
{
|
|
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
|
|
return ((uint32_t)(__LL_RCC_CALC_PCLK1_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB1Prescaler())));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the PCLK2 frequency.
|
|
* @note Each time PCLK2 changes, this function must be called to update the
|
|
* right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
|
|
* @retval PCLK2 frequency in Hz
|
|
*/
|
|
uint32_t HAL_RCC_GetPCLK2Freq(void)
|
|
{
|
|
/* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
|
|
return ((uint32_t)(__LL_RCC_CALC_PCLK2_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB2Prescaler())));
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the RCC_OscInitStruct according to the internal
|
|
* RCC configuration registers.
|
|
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
* will be configured.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(RCC_OscInitStruct != (void *)NULL);
|
|
|
|
/* Set all possible values for the Oscillator type parameter ---------------*/
|
|
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \
|
|
RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI1 | RCC_OSCILLATORTYPE_LSI2 | RCC_OSCILLATORTYPE_HSI48;
|
|
|
|
|
|
/* Get the HSE configuration -----------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
|
|
}
|
|
else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
|
|
}
|
|
|
|
/* Get the MSI configuration -----------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_MSION) == RCC_CR_MSION)
|
|
{
|
|
RCC_OscInitStruct->MSIState = RCC_MSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->MSIState = RCC_MSI_OFF;
|
|
}
|
|
RCC_OscInitStruct->MSICalibrationValue = LL_RCC_MSI_GetCalibTrimming();
|
|
RCC_OscInitStruct->MSIClockRange = LL_RCC_MSI_GetRange();
|
|
|
|
/* Get the HSI configuration -----------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION)
|
|
{
|
|
RCC_OscInitStruct->HSIState = RCC_HSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
|
|
}
|
|
|
|
RCC_OscInitStruct->HSICalibrationValue = LL_RCC_HSI_GetCalibTrimming();
|
|
|
|
/* Get the LSE configuration -----------------------------------------------*/
|
|
if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
|
|
}
|
|
else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
|
|
}
|
|
|
|
/* Get the LSI configuration -----------------------------------------------*/
|
|
const uint32_t temp_lsi1on = (RCC->CSR & RCC_CSR_LSI1ON);
|
|
const uint32_t temp_lsi2on = (RCC->CSR & RCC_CSR_LSI2ON);
|
|
if ((temp_lsi1on == RCC_CSR_LSI1ON) || (temp_lsi2on == RCC_CSR_LSI2ON))
|
|
{
|
|
RCC_OscInitStruct->LSIState = RCC_LSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
|
|
}
|
|
|
|
/* Get the HSI48 configuration ---------------------------------------------*/
|
|
if ((RCC->CRRCR & RCC_CRRCR_HSI48ON) == RCC_CRRCR_HSI48ON)
|
|
{
|
|
RCC_OscInitStruct->HSI48State = RCC_HSI48_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
|
|
}
|
|
|
|
|
|
/* Get the PLL configuration -----------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON)
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
|
|
}
|
|
RCC_OscInitStruct->PLL.PLLSource = LL_RCC_PLL_GetMainSource();
|
|
RCC_OscInitStruct->PLL.PLLM = LL_RCC_PLL_GetDivider();
|
|
RCC_OscInitStruct->PLL.PLLN = LL_RCC_PLL_GetN();
|
|
RCC_OscInitStruct->PLL.PLLP = LL_RCC_PLL_GetP();
|
|
RCC_OscInitStruct->PLL.PLLQ = LL_RCC_PLL_GetQ();
|
|
RCC_OscInitStruct->PLL.PLLR = LL_RCC_PLL_GetR();
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the RCC_ClkInitStruct according to the internal
|
|
* RCC configuration registers.
|
|
* @param RCC_ClkInitStruct Pointer to a @ref RCC_ClkInitTypeDef structure that
|
|
* will be configured.
|
|
* @param pFLatency Pointer on the Flash Latency.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(RCC_ClkInitStruct != (void *)NULL);
|
|
assert_param(pFLatency != (void *)NULL);
|
|
|
|
/* Set all possible values for the Clock type parameter --------------------*/
|
|
RCC_ClkInitStruct->ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2 | \
|
|
RCC_CLOCKTYPE_HCLK2 | RCC_CLOCKTYPE_HCLK4);
|
|
|
|
/* Get the SYSCLK configuration --------------------------------------------*/
|
|
RCC_ClkInitStruct->SYSCLKSource = LL_RCC_GetSysClkSource();
|
|
|
|
/* Get the HCLK configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->AHBCLKDivider = LL_RCC_GetAHBPrescaler();
|
|
|
|
/* Get the APB1 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB1CLKDivider = LL_RCC_GetAPB1Prescaler();
|
|
|
|
/* Get the APB2 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB2CLKDivider = LL_RCC_GetAPB2Prescaler();
|
|
|
|
/* Get the AHBCLK2Divider configuration ------------------------------------*/
|
|
RCC_ClkInitStruct->AHBCLK2Divider = LL_C2_RCC_GetAHBPrescaler();
|
|
|
|
/* Get the AHBCLK4Divider configuration ------------------------------------*/
|
|
RCC_ClkInitStruct->AHBCLK4Divider = LL_RCC_GetAHB4Prescaler();
|
|
|
|
/* Get the Flash Wait State (Latency) configuration ------------------------*/
|
|
*pFLatency = __HAL_FLASH_GET_LATENCY();
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the Clock Security System.
|
|
* @note If a failure is detected on the HSE oscillator clock, this oscillator
|
|
* is automatically disabled and an interrupt is generated to inform the
|
|
* software about the failure (Clock Security System Interrupt, CSSI),
|
|
* allowing the MCU to perform rescue operations. The CSSI is linked to
|
|
* CPU1 and CPU2 NMI (Non-Maskable Interrupt) exception vector.
|
|
* @note The Clock Security System can only be cleared by reset.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_EnableCSS(void)
|
|
{
|
|
LL_RCC_HSE_EnableCSS();
|
|
}
|
|
|
|
/**
|
|
* @brief Handle the RCC HSE Clock Security System interrupt request.
|
|
* @note This API should be called under the NMI_Handler().
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_NMI_IRQHandler(void)
|
|
{
|
|
/* Check RCC CSSF interrupt flag */
|
|
if (__HAL_RCC_GET_IT(RCC_IT_HSECSS))
|
|
{
|
|
/* RCC Clock Security System interrupt user callback */
|
|
HAL_RCC_CSSCallback();
|
|
|
|
/* Clear RCC CSS pending bit */
|
|
__HAL_RCC_CLEAR_IT(RCC_IT_HSECSS);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Handle the RCC HSE Clock Security System interrupt callback.
|
|
* @retval none
|
|
*/
|
|
__weak void HAL_RCC_CSSCallback(void)
|
|
{
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the @ref HAL_RCC_CSSCallback should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @addtogroup RCC_Private_Functions
|
|
* @{
|
|
*/
|
|
|
|
|
|
/**
|
|
* @brief Update number of Flash wait states in line with MSI range and current
|
|
voltage range.
|
|
* @param MSI_Range MSI range value from @ref RCC_MSIRANGE_0 to @ref RCC_MSIRANGE_11
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSI_Range)
|
|
{
|
|
uint32_t flash_clksrcfreq, msifreq;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_MSI_CLOCK_RANGE(MSI_Range));
|
|
|
|
/* MSI frequency range in Hz */
|
|
if(MSI_Range > RCC_MSIRANGE_11)
|
|
{
|
|
msifreq = __LL_RCC_CALC_MSI_FREQ(RCC_MSIRANGE_11);
|
|
}
|
|
else
|
|
{
|
|
msifreq = __LL_RCC_CALC_MSI_FREQ(MSI_Range);
|
|
}
|
|
|
|
flash_clksrcfreq = __LL_RCC_CALC_HCLK4_FREQ(msifreq, LL_RCC_GetAHB4Prescaler());
|
|
|
|
return RCC_SetFlashLatency((flash_clksrcfreq / MEGA_HZ), HAL_PWREx_GetVoltageRange());
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Update number of Flash wait states.
|
|
* @param Flash_ClkSrcFreq Flash Clock Source (in MHz)
|
|
* @param VCORE_Voltage Current Vcore voltage (PWR_REGULATOR_VOLTAGE_SCALE1 or PWR_REGULATOR_VOLTAGE_SCALE2)
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef RCC_SetFlashLatency(uint32_t Flash_ClkSrcFreq, uint32_t VCORE_Voltage)
|
|
{
|
|
/* Flash Clock source (HCLK4) range in MHz with a VCORE is range1 */
|
|
const uint32_t FLASH_CLK_SRC_RANGE_VOS1[] = {18UL, 36UL, 54UL, 64UL};
|
|
/* Flash Clock source (HCLK4) range in MHz with a VCORE is range2 */
|
|
const uint32_t FLASH_CLK_SRC_RANGE_VOS2[] = {6UL, 12UL, 16UL};
|
|
/* Flash Latency range */
|
|
const uint32_t FLASH_LATENCY_RANGE[] = {FLASH_LATENCY_0, FLASH_LATENCY_1, FLASH_LATENCY_2, FLASH_LATENCY_3};
|
|
uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */
|
|
uint32_t tickstart;
|
|
|
|
if (VCORE_Voltage == PWR_REGULATOR_VOLTAGE_SCALE1)
|
|
{
|
|
for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS1); index++)
|
|
{
|
|
if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS1[index])
|
|
{
|
|
latency = FLASH_LATENCY_RANGE[index];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else /* PWR_REGULATOR_VOLTAGE_SCALE2 */
|
|
{
|
|
for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS2); index++)
|
|
{
|
|
if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS2[index])
|
|
{
|
|
latency = FLASH_LATENCY_RANGE[index];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
__HAL_FLASH_SET_LATENCY(latency);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
while (__HAL_FLASH_GET_LATENCY() != latency)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_RCC_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|