mbed-os/targets/TARGET_NUVOTON/TARGET_NUC472/device/StdDriver/nuc472_sd.c

1044 lines
29 KiB
C

/**************************************************************************//**
* @file SD.c
* @version V1.00
* $Revision: 16 $
* $Date: 15/11/26 10:45a $
* @brief NUC472/NUC442 SD driver source file
*
* @note
* Copyright (C) 2013 Nuvoton Technology Corp. All rights reserved.
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "NUC472_442.h"
/** @addtogroup NUC472_442_Device_Driver NUC472/NUC442 Device Driver
@{
*/
/** @addtogroup NUC472_442_SD_Driver SD Driver
@{
*/
/** @addtogroup NUC472_442_SD_EXPORTED_FUNCTIONS SD Exported Functions
@{
*/
#define SD_BLOCK_SIZE 512
/// @cond HIDDEN_SYMBOLS
// global variables
// For response R3 (such as ACMD41, CRC-7 is invalid; but SD controller will still
// calculate CRC-7 and get an error result, software should ignore this error and clear SDISR [CRC_IF] flag
// _sd_uR3_CMD is the flag for it. 1 means software should ignore CRC-7 error
uint32_t _sd_uR3_CMD=0;
uint32_t _sd_uR7_CMD=0;
uint8_t volatile _sd_SDDataReady = FALSE;
uint8_t *_sd_pSDHCBuffer;
uint32_t _sd_ReferenceClock;
#if defined (__CC_ARM)
__align(4096) uint8_t _sd_ucSDHCBuffer[512];
#elif defined ( __ICCARM__ ) /*!< IAR Compiler */
#pragma data_alignment = 4096
uint8_t _sd_ucSDHCBuffer[512];
#elif defined ( __GNUC__ )
uint8_t _sd_ucSDHCBuffer[512] __attribute__((aligned (4096)));
#endif
int sd0_ok = 0;
int sd1_ok = 0;
uint8_t pSD0_offset = 0;
uint8_t pSD1_offset = 0;
DISK_DATA_T SD_DiskInfo0;
DISK_DATA_T SD_DiskInfo1;
SD_INFO_T SD0;
SD_INFO_T SD1;
void SD_CheckRB()
{
while(1) {
SD->CTL |= SDH_CTL_CLK8OEN_Msk;
while(SD->CTL & SDH_CTL_CLK8OEN_Msk);
if (SD->INTSTS & SDH_INTSTS_DAT0STS_Msk)
break;
}
}
int SD_SDCommand(SD_INFO_T *pSD, uint8_t ucCmd, uint32_t uArg)
{
volatile int buf;
SD->CMDARG = uArg;
buf = (SD->CTL&(~SDH_CTL_CMDCODE_Msk))|(ucCmd << 8)|(SDH_CTL_COEN_Msk);
SD->CTL = buf;
while(SD->CTL & SDH_CTL_COEN_Msk) {
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
return Successful;
}
int SD_SDCmdAndRsp(SD_INFO_T *pSD, uint8_t ucCmd, uint32_t uArg, int ntickCount)
{
volatile int buf;
SD->CMDARG = uArg;
buf = (SD->CTL&(~SDH_CTL_CMDCODE_Msk))|(ucCmd << 8)|(SDH_CTL_COEN_Msk | SDH_CTL_RIEN_Msk);
SD->CTL = buf;
if (ntickCount > 0) {
while(SD->CTL & SDH_CTL_RIEN_Msk) {
if(ntickCount-- == 0) {
SD->CTL |= SDH_CTL_CTLRST_Msk; // reset SD engine
return 2;
}
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
} else {
while(SD->CTL & SDH_CTL_RIEN_Msk) {
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
}
if (_sd_uR7_CMD) {
if (((SD->RESP1 & 0xff) != 0x55) && ((SD->RESP0 & 0xf) != 0x01)) {
_sd_uR7_CMD = 0;
return SD_CMD8_ERROR;
}
}
if (!_sd_uR3_CMD) {
if (SD->INTSTS & SDH_INTSTS_CRC7_Msk) // check CRC7
return Successful;
else {
return SD_CRC7_ERROR;
}
} else { // ignore CRC error for R3 case
_sd_uR3_CMD = 0;
SD->INTSTS = SDH_INTSTS_CRCIF_Msk;
return Successful;
}
}
int SD_Swap32(int val)
{
#if 1
int buf;
buf = val;
val <<= 24;
val |= (buf<<8)&0xff0000;
val |= (buf>>8)&0xff00;
val |= (buf>>24)&0xff;
return val;
#else
return ((val<<24) | ((val<<8)&0xff0000) | ((val>>8)&0xff00) | (val>>24));
#endif
}
// Get 16 bytes CID or CSD
int SD_SDCmdAndRsp2(SD_INFO_T *pSD, uint8_t ucCmd, uint32_t uArg, uint32_t *puR2ptr)
{
unsigned int i, buf;
unsigned int tmpBuf[5];
SD->CMDARG = uArg;
buf = (SD->CTL&(~SDH_CTL_CMDCODE_Msk))|(ucCmd << 8)|(SDH_CTL_COEN_Msk | SDH_CTL_R2EN_Msk);
SD->CTL = buf;
while(SD->CTL & SDH_CTL_R2EN_Msk) {
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
if (SD->INTSTS & SDH_INTSTS_CRC7_Msk) {
for (i=0; i<5; i++) {
tmpBuf[i] = SD_Swap32(*(int*)(SD_BASE+i*4));
}
for (i=0; i<4; i++)
*puR2ptr++ = ((tmpBuf[i] & 0x00ffffff)<<8) | ((tmpBuf[i+1] & 0xff000000)>>24);
return Successful;
} else
return SD_CRC7_ERROR;
}
int SD_SDCmdAndRspDataIn(SD_INFO_T *pSD, uint8_t ucCmd, uint32_t uArg)
{
volatile int buf;
SD->CMDARG = uArg;
buf = (SD->CTL&(~SDH_CTL_CMDCODE_Msk))|(ucCmd << 8)|
(SDH_CTL_COEN_Msk | SDH_CTL_RIEN_Msk | SDH_CTL_DIEN_Msk);
SD->CTL = buf;
while (SD->CTL & SDH_CTL_RIEN_Msk) {
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
while (SD->CTL & SDH_CTL_DIEN_Msk) {
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
if (!(SD->INTSTS & SDH_INTSTS_CRC7_Msk)) { // check CRC7
return SD_CRC7_ERROR;
}
if (!(SD->INTSTS & SDH_INTSTS_CRC16_Msk)) { // check CRC16
return SD_CRC16_ERROR;
}
return Successful;
}
// there are 8 bits for divider0, maximum is 256
#define SD_CLK_DIV0_MAX 256
void SD_Set_clock(uint32_t sd_clock_khz)
{
uint32_t rate, div1, i;
uint32_t u32SD_ClkSrc;
if(sd_clock_khz >= 24000) {
sd_clock_khz = 24000;
}
u32SD_ClkSrc = (CLK->CLKSEL0 & CLK_CLKSEL0_SDHSEL_Msk);
if(u32SD_ClkSrc == CLK_CLKSEL0_SDHSEL_HXT)
_sd_ReferenceClock = (CLK_GetHXTFreq() / 1000);
else if(u32SD_ClkSrc == CLK_CLKSEL0_SDHSEL_HIRC)
_sd_ReferenceClock = (__HIRC / 1000);
else if(u32SD_ClkSrc == CLK_CLKSEL0_SDHSEL_PLL)
_sd_ReferenceClock = (CLK_GetPLLClockFreq() / 1000);
else if(u32SD_ClkSrc == CLK_CLKSEL0_SDHSEL_HCLK)
_sd_ReferenceClock = (CLK_GetHCLKFreq() / 1000);
rate = _sd_ReferenceClock / sd_clock_khz;
// choose slower clock if system clock cannot divisible by wanted clock
if (_sd_ReferenceClock % sd_clock_khz != 0)
rate++;
if(rate >= SD_CLK_DIV0_MAX) {
rate = SD_CLK_DIV0_MAX;
}
//--- calculate the second divider CLKDIV0[SDHOST_N]
div1 = ((rate -1) & 0xFF);
//--- setup register
CLK->CLKDIV0 &= ~CLK_CLKDIV0_SDHDIV_Msk;
CLK->CLKDIV0 |= (div1 << CLK_CLKDIV0_SDHDIV_Pos);
for(i=0; i<1000; i++); // waiting for clock become stable
return;
}
void SD_CardSelect(int cardSel)
{
if(cardSel == 0) {
SD->CTL |= (SD->CTL & ~SDH_CTL_SDPORT_Msk);
} else if(cardSel == 1) {
SD->CTL |= ((SD->CTL & ~SDH_CTL_SDPORT_Msk) | (1 << SDH_CTL_SDPORT_Pos));
}
}
uint32_t SD_CardDetection(uint32_t u32CardNum)
{
uint32_t i;
if (u32CardNum == SD_PORT0) {
if(SD->INTEN & SDH_INTEN_CDSRC0_Msk) { // Card detect pin from GPIO
if(SD->INTSTS & SDH_INTSTS_CDSTS0_Msk) { // Card remove
SD0.IsCardInsert = FALSE;
return FALSE;
} else
SD0.IsCardInsert = TRUE;
} else if(!(SD->INTEN & SDH_INTEN_CDSRC0_Msk)) {
SD->CTL |= SDH_CTL_CLKKEEP0_Msk;
for(i= 0; i < 5000; i++);
if(SD->INTSTS & SDH_INTSTS_CDSTS0_Msk) // Card insert
SD0.IsCardInsert = TRUE;
else {
SD0.IsCardInsert = FALSE;
return FALSE;
}
SD->CTL &= ~SDH_CTL_CLKKEEP0_Msk;
}
} else if (u32CardNum == SD_PORT1) {
if(SD->INTEN & SDH_INTEN_CDSRC1_Msk) { // Card detect pin from GPIO
if(SD->INTSTS & SDH_INTSTS_CDSTS1_Msk) { // Card remove
SD1.IsCardInsert = FALSE;
return FALSE;
} else
SD1.IsCardInsert = TRUE;
} else if(!(SD->INTEN & SDH_INTEN_CDSRC1_Msk)) {
SD->CTL |= SDH_CTL_CLKKEEP1_Msk;
for(i= 0; i < 5000; i++);
if(SD->INTSTS & SDH_INTSTS_CDSTS1_Msk) // Card insert
SD1.IsCardInsert = TRUE;
else {
SD1.IsCardInsert = FALSE;
return FALSE;
}
SD->CTL &= ~SDH_CTL_CLKKEEP1_Msk;
}
}
return TRUE;
}
// Initial
int SD_Init(SD_INFO_T *pSD)
{
int volatile i, status;
unsigned int resp;
unsigned int CIDBuffer[4];
unsigned int volatile u32CmdTimeOut;
// set the clock to 200KHz
//SD_Set_clock(200);
SD_Set_clock(100);
// power ON 74 clock
SD->CTL |= SDH_CTL_CLK74OEN_Msk;
while(SD->CTL & SDH_CTL_CLK74OEN_Msk) {
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
SD_SDCommand(pSD, 0, 0); // reset all cards
for (i=0x1000; i>0; i--);
// initial SDHC
_sd_uR7_CMD = 1;
//u32CmdTimeOut = 5000;
u32CmdTimeOut = 0xFFFFF;
//u32CmdTimeOut = 0;
i = SD_SDCmdAndRsp(pSD, 8, 0x00000155, u32CmdTimeOut);
if (i == Successful) {
// SD 2.0
SD_SDCmdAndRsp(pSD, 55, 0x00, u32CmdTimeOut);
_sd_uR3_CMD = 1;
SD_SDCmdAndRsp(pSD, 41, 0x40ff8000, u32CmdTimeOut); // 2.7v-3.6v
resp = SD->RESP0;
while (!(resp & 0x00800000)) { // check if card is ready
SD_SDCmdAndRsp(pSD, 55, 0x00, u32CmdTimeOut);
_sd_uR3_CMD = 1;
SD_SDCmdAndRsp(pSD, 41, 0x40ff8000, u32CmdTimeOut); // 3.0v-3.4v
resp = SD->RESP0;
}
if (resp & 0x00400000)
pSD->CardType = SD_TYPE_SD_HIGH;
else
pSD->CardType = SD_TYPE_SD_LOW;
} else {
// SD 1.1
SD_SDCommand(pSD, 0, 0); // reset all cards
for (i=0x100; i>0; i--);
i = SD_SDCmdAndRsp(pSD, 55, 0x00, u32CmdTimeOut);
if (i == 2) { // MMC memory
SD_SDCommand(pSD, 0, 0); // reset
for (i=0x100; i>0; i--);
_sd_uR3_CMD = 1;
if (SD_SDCmdAndRsp(pSD, 1, 0x40ff8000, u32CmdTimeOut) != 2) { // eMMC memory
resp = SD->RESP0;
while (!(resp & 0x00800000)) { // check if card is ready
_sd_uR3_CMD = 1;
SD_SDCmdAndRsp(pSD, 1, 0x40ff8000, u32CmdTimeOut); // high voltage
resp = SD->RESP0;
}
if(resp & 0x00400000)
pSD->CardType = SD_TYPE_EMMC;
else
pSD->CardType = SD_TYPE_MMC;
} else {
pSD->CardType = SD_TYPE_UNKNOWN;
return SD_ERR_DEVICE;
}
} else if (i == 0) { // SD Memory
_sd_uR3_CMD = 1;
SD_SDCmdAndRsp(pSD, 41, 0x00ff8000, u32CmdTimeOut); // 3.0v-3.4v
resp = SD->RESP0;
while (!(resp & 0x00800000)) { // check if card is ready
SD_SDCmdAndRsp(pSD, 55, 0x00,u32CmdTimeOut);
_sd_uR3_CMD = 1;
SD_SDCmdAndRsp(pSD, 41, 0x00ff8000, u32CmdTimeOut); // 3.0v-3.4v
resp = SD->RESP0;
}
pSD->CardType = SD_TYPE_SD_LOW;
} else {
pSD->CardType = SD_TYPE_UNKNOWN;
return SD_INIT_ERROR;
}
}
// CMD2, CMD3
if (pSD->CardType != SD_TYPE_UNKNOWN) {
SD_SDCmdAndRsp2(pSD, 2, 0x00, CIDBuffer);
if ((pSD->CardType == SD_TYPE_MMC) || (pSD->CardType == SD_TYPE_EMMC)) {
if ((status = SD_SDCmdAndRsp(pSD, 3, 0x10000, 0)) != Successful) // set RCA
return status;
pSD->RCA = 0x10000;
} else {
if ((status = SD_SDCmdAndRsp(pSD, 3, 0x00, 0)) != Successful) // get RCA
return status;
else
pSD->RCA = (SD->RESP0 << 8) & 0xffff0000;
}
}
return Successful;
}
int SD_SwitchToHighSpeed(SD_INFO_T *pSD)
{
int volatile status=0;
uint16_t current_comsumption, busy_status0;
SD->DMASA = (uint32_t)_sd_pSDHCBuffer; // set DMA transfer starting address
SD->BLEN = 63; // 512 bit
if ((status = SD_SDCmdAndRspDataIn(pSD, 6, 0x00ffff01)) != Successful)
return Fail;
current_comsumption = _sd_pSDHCBuffer[0]<<8 | _sd_pSDHCBuffer[1];
if (!current_comsumption)
return Fail;
busy_status0 = _sd_pSDHCBuffer[28]<<8 | _sd_pSDHCBuffer[29];
if (!busy_status0) { // function ready
SD->DMASA = (uint32_t)_sd_pSDHCBuffer; // set DMA transfer starting address
SD->BLEN = 63; // 512 bit
if ((status = SD_SDCmdAndRspDataIn(pSD, 6, 0x80ffff01)) != Successful)
return Fail;
// function change timing: 8 clocks
SD->CTL |= SDH_CTL_CLK8OEN_Msk;
while(SD->CTL & SDH_CTL_CLK8OEN_Msk);
current_comsumption = _sd_pSDHCBuffer[0]<<8 | _sd_pSDHCBuffer[1];
if (!current_comsumption)
return Fail;
return Successful;
} else
return Fail;
}
int SD_SelectCardType(SD_INFO_T *pSD)
{
int volatile status=0;
unsigned int arg;
if ((status = SD_SDCmdAndRsp(pSD, 7, pSD->RCA, 0)) != Successful)
return status;
SD_CheckRB();
// if SD card set 4bit
if (pSD->CardType == SD_TYPE_SD_HIGH) {
_sd_pSDHCBuffer = (uint8_t *)((uint32_t)_sd_ucSDHCBuffer);
SD->DMASA = (uint32_t)_sd_pSDHCBuffer; // set DMA transfer starting address
SD->BLEN = 0x07; // 64 bit
if ((status = SD_SDCmdAndRsp(pSD, 55, pSD->RCA, 0)) != Successful)
return status;
if ((status = SD_SDCmdAndRspDataIn(pSD, 51, 0x00)) != Successful)
return status;
if ((_sd_ucSDHCBuffer[0] & 0xf) == 0x2) {
status = SD_SwitchToHighSpeed(pSD);
if (status == Successful) {
/* divider */
SD_Set_clock(SDHC_FREQ);
}
}
if ((status = SD_SDCmdAndRsp(pSD, 55, pSD->RCA, 0)) != Successful)
return status;
if ((status = SD_SDCmdAndRsp(pSD, 6, 0x02, 0)) != Successful) // set bus width
return status;
SD->CTL |= SDH_CTL_DBW_Msk;
} else if (pSD->CardType == SD_TYPE_SD_LOW) {
_sd_pSDHCBuffer = (uint8_t *)((uint32_t)_sd_ucSDHCBuffer);
SD->DMASA = (uint32_t) _sd_pSDHCBuffer; // set DMA transfer starting address
SD->BLEN = 0x07; // 64 bit
if ((status = SD_SDCmdAndRsp(pSD, 55, pSD->RCA, 0)) != Successful)
return status;
if ((status = SD_SDCmdAndRspDataIn(pSD, 51, 0x00)) != Successful)
return status;
// set data bus width. ACMD6 for SD card, SDCR_DBW for host.
if ((status = SD_SDCmdAndRsp(pSD, 55, pSD->RCA, 0)) != Successful)
return status;
if ((status = SD_SDCmdAndRsp(pSD, 6, 0x02, 0)) != Successful) // set bus width
return status;
SD->CTL |= SDH_CTL_DBW_Msk;
} else if ((pSD->CardType == SD_TYPE_MMC) ||(pSD->CardType == SD_TYPE_EMMC)) {
if(pSD->CardType == SD_TYPE_MMC)
SD->CTL &= ~SDH_CTL_DBW_Msk;
//--- sent CMD6 to MMC card to set bus width to 4 bits mode
// set CMD6 argument Access field to 3, Index to 183, Value to 1 (4-bit mode)
arg = (3 << 24) | (183 << 16) | (1 << 8);
if ((status = SD_SDCmdAndRsp(pSD, 6, arg, 0)) != Successful)
return status;
SD_CheckRB();
SD->CTL |= SDH_CTL_DBW_Msk;; // set bus width to 4-bit mode for SD host controller
}
if ((status = SD_SDCmdAndRsp(pSD, 16, SD_BLOCK_SIZE, 0)) != Successful) // set block length
return status;
SD->BLEN = SD_BLOCK_SIZE - 1; // set the block size
SD_SDCommand(pSD, 7, 0);
SD->CTL |= SDH_CTL_CLK8OEN_Msk;
while(SD->CTL & SDH_CTL_CLK8OEN_Msk);
#ifdef _SD_USE_INT_
SD->INTEN |= SDH_INTEN_BLKDIEN_Msk;
#endif //_SD_USE_INT_
return Successful;
}
void SD_Get_SD_info(SD_INFO_T *pSD, DISK_DATA_T *_info)
{
unsigned int R_LEN, C_Size, MULT, size;
unsigned int Buffer[4];
unsigned char *ptr;
SD_SDCmdAndRsp2(pSD, 9, pSD->RCA, Buffer);
if ((pSD->CardType == SD_TYPE_MMC) || (pSD->CardType == SD_TYPE_EMMC)) {
// for MMC/eMMC card
if ((Buffer[0] & 0xc0000000) == 0xc0000000) {
// CSD_STRUCTURE [127:126] is 3
// CSD version depend on EXT_CSD register in eMMC v4.4 for card size > 2GB
SD_SDCmdAndRsp(pSD, 7, pSD->RCA, 0);
ptr = (uint8_t *)((uint32_t)_sd_ucSDHCBuffer );
SD->DMASA = (uint32_t)ptr; // set DMA transfer starting address
SD->BLEN = 511; // read 512 bytes for EXT_CSD
if (SD_SDCmdAndRspDataIn(pSD, 8, 0x00) != Successful)
return;
SD_SDCommand(pSD, 7, 0);
SD->CTL |= SDH_CTL_CLK8OEN_Msk;
while(SD->CTL & SDH_CTL_CLK8OEN_Msk);
_info->totalSectorN = (*(uint32_t *)(ptr+212));
_info->diskSize = _info->totalSectorN / 2;
} else {
// CSD version v1.0/1.1/1.2 in eMMC v4.4 spec for card size <= 2GB
R_LEN = (Buffer[1] & 0x000f0000) >> 16;
C_Size = ((Buffer[1] & 0x000003ff) << 2) | ((Buffer[2] & 0xc0000000) >> 30);
MULT = (Buffer[2] & 0x00038000) >> 15;
size = (C_Size+1) * (1<<(MULT+2)) * (1<<R_LEN);
_info->diskSize = size / 1024;
_info->totalSectorN = size / 512;
}
} else {
if (Buffer[0] & 0xc0000000) {
C_Size = ((Buffer[1] & 0x0000003f) << 16) | ((Buffer[2] & 0xffff0000) >> 16);
size = (C_Size+1) * 512; // Kbytes
_info->diskSize = size;
_info->totalSectorN = size << 1;
} else {
R_LEN = (Buffer[1] & 0x000f0000) >> 16;
C_Size = ((Buffer[1] & 0x000003ff) << 2) | ((Buffer[2] & 0xc0000000) >> 30);
MULT = (Buffer[2] & 0x00038000) >> 15;
size = (C_Size+1) * (1<<(MULT+2)) * (1<<R_LEN);
_info->diskSize = size / 1024;
_info->totalSectorN = size / 512;
}
}
_info->sectorSize = 512;
}
int SD_ChipErase(SD_INFO_T *pSD, DISK_DATA_T *_info)
{
int status=0;
status = SD_SDCmdAndRsp(pSD, 32, 512, 6000);
if (status < 0) {
return status;
}
status = SD_SDCmdAndRsp(pSD, 33, _info->totalSectorN*512, 6000);
if (status < 0) {
return status;
}
status = SD_SDCmdAndRsp(pSD, 38, 0, 6000);
if (status < 0) {
return status;
}
SD_CheckRB();
return 0;
}
/// @endcond HIDDEN_SYMBOLS
/**
* @brief This function use to reset SD function and select card detection source and pin.
*
* @param[in] u32CardDetSrc Select card detection source from SD0 or SD1. ( \ref SD_PORT0 / \ref SD_PORT1) \n
* And also select card detection pin from GPIO or DAT3 pin. ( \ref CardDetect_From_GPIO / \ref CardDetect_From_DAT3)
*
* @return None
*/
void SD_Open(uint32_t u32CardDetSrc)
{
// Enable SD Card Host Controller operation.
//CLK->AHBCLK |= CLK_AHBCLK_SDHCKEN_Msk;
// enable DMAC
SD->DMACTL = SDH_DMACTL_DMARST_Msk;
while(SD->DMACTL & SDH_DMACTL_DMARST_Msk);
SD->DMACTL = SDH_DMACTL_DMAEN_Msk;
//Reset FMI
SD->GCTL = SDH_GCTL_GCTLRST_Msk; // Start reset FMI controller.
while(SD->GCTL & SDH_GCTL_GCTLRST_Msk);
//#ifdef _SD_USE_INT_
// NVIC_EnableIRQ(SD_IRQn);
//#endif //_SD_USE_INT_
// enable SD
SD->GCTL = SDH_GCTL_SDEN_Msk;
if(u32CardDetSrc & SD_PORT0) {
SD->CTL |= (SD->CTL & ~SDH_CTL_SDPORT_Msk);
if(u32CardDetSrc & CardDetect_From_DAT3) {
SD->INTEN &= ~SDH_INTEN_CDSRC0_Msk;
} else {
SD->INTEN |= SDH_INTEN_CDSRC0_Msk;
}
} else if(u32CardDetSrc & SD_PORT1) {
SD->CTL |= ((SD->CTL & ~SDH_CTL_SDPORT_Msk) | (1 << SDH_CTL_SDPORT_Pos));
if(u32CardDetSrc & CardDetect_From_DAT3) {
SD->INTEN &= ~SDH_INTEN_CDSRC1_Msk;
} else {
SD->INTEN |= SDH_INTEN_CDSRC1_Msk;
}
}
SD->CTL |= SDH_CTL_CTLRST_Msk; // SD software reset
while(SD->CTL & SDH_CTL_CTLRST_Msk);
SD->CTL &= ~((0xFF) | (SDH_CTL_CLKKEEP1_Msk)); // disable SD clock output
if(u32CardDetSrc & SD_PORT0) {
memset(&SD0, 0, sizeof(SD_INFO_T));
} else if(u32CardDetSrc & SD_PORT1) {
memset(&SD1, 0, sizeof(SD_INFO_T));
}
}
/**
* @brief This function use to initial SD card.
*
* @param[in] u32CardNum Select initial SD0 or SD1. ( \ref SD_PORT0 / \ref SD_PORT1)
*
* @return None
*/
void SD_Probe(uint32_t u32CardNum)
{
// Disable FMI/SD host interrupt
SD->GINTEN = 0;
SD->CTL &= ~SDH_CTL_SDNWR_Msk;
SD->CTL |= 0x09 << SDH_CTL_SDNWR_Pos; // set SDNWR = 9
SD->CTL &= ~SDH_CTL_BLKCNT_Msk;
SD->CTL |= 0x01 << SDH_CTL_BLKCNT_Pos; // set BLKCNT = 1
SD->CTL &= ~SDH_CTL_DBW_Msk; // SD 1-bit data bus
if(!(SD_CardDetection(u32CardNum)))
return;
if (u32CardNum == SD_PORT0) {
if (SD_Init(&SD0) < 0)
return;
/* divider */
if (SD0.CardType == SD_TYPE_MMC)
SD_Set_clock(20000);
else
SD_Set_clock(SD_FREQ);
SD_Get_SD_info(&SD0, &SD_DiskInfo0);
if (SD_SelectCardType(&SD0))
return;
sd0_ok = 1;
} else if (u32CardNum == SD_PORT1) {
if (SD_Init(&SD1) < 0)
return;
/* divider */
if (SD1.CardType == SD_TYPE_MMC)
SD_Set_clock(20000);
else
SD_Set_clock(SD_FREQ);
SD_Get_SD_info(&SD1, &SD_DiskInfo1);
if (SD_SelectCardType(&SD1))
return;
sd1_ok = 1;
}
}
/**
* @brief This function use to read data from SD card.
*
* @param[in] u32CardNum Select card: SD0 or SD1. ( \ref SD_PORT0 / \ref SD_PORT1)
* @param[out] pu8BufAddr The buffer to receive the data from SD card.
* @param[in] u32StartSec The start read sector address.
* @param[in] u32SecCount The the read sector number of data
*
* @return None
*/
uint32_t SD_Read(uint32_t u32CardNum, uint8_t *pu8BufAddr, uint32_t u32StartSec, uint32_t u32SecCount)
{
char volatile bIsSendCmd = FALSE, buf;
unsigned int volatile reg;
int volatile i, loop, status;
uint32_t blksize = SD_BLOCK_SIZE;
SD_INFO_T *pSD;
if(u32CardNum == SD_PORT0)
pSD = &SD0;
else
pSD = &SD1;
//--- check input parameters
if (u32SecCount == 0) {
return SD_SELECT_ERROR;
}
if ((status = SD_SDCmdAndRsp(pSD, 7, pSD->RCA, 0)) != Successful)
return status;
SD_CheckRB();
SD->BLEN = blksize - 1; // the actual byte count is equal to (SDBLEN+1)
if ( (pSD->CardType == SD_TYPE_SD_HIGH) || (pSD->CardType == SD_TYPE_EMMC) )
SD->CMDARG = u32StartSec;
else
SD->CMDARG = u32StartSec * blksize;
SD->DMASA = (uint32_t)pu8BufAddr;
loop = u32SecCount / 255;
for (i=0; i<loop; i++) {
#ifdef _SD_USE_INT_
_sd_SDDataReady = FALSE;
#endif //_SD_USE_INT_
reg = SD->CTL & ~SDH_CTL_CMDCODE_Msk;
reg = reg | 0xff0000; // set BLK_CNT to 255
if (bIsSendCmd == FALSE) {
SD->CTL = reg|(18<<8)|(SDH_CTL_COEN_Msk | SDH_CTL_RIEN_Msk | SDH_CTL_DIEN_Msk);
bIsSendCmd = TRUE;
} else
SD->CTL = reg | SDH_CTL_DIEN_Msk;
#ifdef _SD_USE_INT_
while(!_sd_SDDataReady)
#else
while(1)
#endif //_SD_USE_INT_
{
if(_sd_SDDataReady) break;
#ifndef _SD_USE_INT_
if ((SD->INTSTS & SDH_INTSTS_BLKDIF_Msk) && (!(SD->CTL & SDH_CTL_DIEN_Msk))) {
SD->INTSTS = SDH_INTSTS_BLKDIF_Msk;
break;
}
#endif
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
if (!(SD->INTSTS & SDH_INTSTS_CRC7_Msk)) { // check CRC7
//printf("sdioSD_Read_in_blksize(): response error!\n");
return SD_CRC7_ERROR;
}
if (!(SD->INTSTS & SDH_INTSTS_CRC16_Msk)) { // check CRC16
//printf("sdioSD_Read_in_blksize() :read data error!\n");
return SD_CRC16_ERROR;
}
}
loop = u32SecCount % 255;
if (loop != 0) {
#ifdef _SD_USE_INT_
_sd_SDDataReady = FALSE;
#endif //_SD_USE_INT_
reg = SD->CTL & (~SDH_CTL_CMDCODE_Msk);
reg = reg & (~SDH_CTL_BLKCNT_Msk);
reg |= (loop << 16); // setup SDCR_BLKCNT
if (bIsSendCmd == FALSE) {
SD->CTL = reg|(18<<8)|(SDH_CTL_COEN_Msk | SDH_CTL_RIEN_Msk | SDH_CTL_DIEN_Msk);
bIsSendCmd = TRUE;
} else
SD->CTL = reg | SDH_CTL_DIEN_Msk;
#ifdef _SD_USE_INT_
while(!_sd_SDDataReady)
#else
while(1)
#endif //_SD_USE_INT_
{
#ifndef _SD_USE_INT_
if ((SD->INTSTS & SDH_INTSTS_BLKDIF_Msk) && (!(SD->CTL & SDH_CTL_DIEN_Msk))) {
SD->INTSTS = SDH_INTSTS_BLKDIF_Msk;
break;
}
#endif
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
if (!(SD->INTSTS & SDH_INTSTS_CRC7_Msk)) { // check CRC7
//printf("sdioSD_Read_in_blksize(): response error!\n");
return SD_CRC7_ERROR;
}
if (!(SD->INTSTS & SDH_INTSTS_CRC16_Msk)) { // check CRC16
//printf("sdioSD_Read_in_blksize(): read data error!\n");
return SD_CRC16_ERROR;
}
}
if (SD_SDCmdAndRsp(pSD, 12, 0, 0)) { // stop command
//printf("stop command fail !!\n");
return SD_CRC7_ERROR;
}
SD_CheckRB();
SD_SDCommand(pSD, 7, 0);
SD->CTL |= SDH_CTL_CLK8OEN_Msk;
while(SD->CTL & SDH_CTL_CLK8OEN_Msk);
return Successful;
}
/**
* @brief This function use to write data to SD card.
*
* @param[in] u32CardNum Select card: SD0 or SD1. ( \ref SD_PORT0 / \ref SD_PORT1)
* @param[in] pu8BufAddr The buffer to send the data to SD card.
* @param[in] u32StartSec The start write sector address.
* @param[in] u32SecCount The the write sector number of data.
*
* @return \ref SD_SELECT_ERROR : u32SecCount is zero. \n
* \ref SD_NO_SD_CARD : SD card be removed. \n
* \ref SD_CRC_ERROR : CRC error happen. \n
* \ref SD_CRC7_ERROR : CRC7 error happen. \n
* \ref Successful : Write data to SD card success.
*/
uint32_t SD_Write(uint32_t u32CardNum, uint8_t *pu8BufAddr, uint32_t u32StartSec, uint32_t u32SecCount)
{
char volatile bIsSendCmd = FALSE;
unsigned int volatile reg;
int volatile i, loop, status;
SD_INFO_T *pSD;
if(u32CardNum == SD_PORT0)
pSD = &SD0;
else
pSD = &SD1;
//--- check input parameters
if (u32SecCount == 0) {
return SD_SELECT_ERROR;
}
if ((status = SD_SDCmdAndRsp(pSD, 7, pSD->RCA, 0)) != Successful)
return status;
SD_CheckRB();
// According to SD Spec v2.0, the write CMD block size MUST be 512, and the start address MUST be 512*n.
SD->BLEN = SD_BLOCK_SIZE - 1; // set the block size
if ((pSD->CardType == SD_TYPE_SD_HIGH) || (pSD->CardType == SD_TYPE_EMMC))
SD->CMDARG = u32StartSec;
else
SD->CMDARG = u32StartSec * SD_BLOCK_SIZE; // set start address for SD CMD
SD->DMASA = (uint32_t)pu8BufAddr;
loop = u32SecCount / 255; // the maximum block count is 0xFF=255 for register SDCR[BLK_CNT]
for (i=0; i<loop; i++) {
#ifdef _SD_USE_INT_
_sd_SDDataReady = FALSE;
#endif //_SD_USE_INT_
reg = SD->CTL & 0xff00c080;
reg = reg | 0xff0000; // set BLK_CNT to 0xFF=255
if (!bIsSendCmd) {
SD->CTL = reg|(25<<8)|(SDH_CTL_COEN_Msk | SDH_CTL_RIEN_Msk | SDH_CTL_DOEN_Msk);
bIsSendCmd = TRUE;
} else
SD->CTL = reg | SDH_CTL_DOEN_Msk;
#ifdef _SD_USE_INT_
while(!_sd_SDDataReady)
#else
while(1)
#endif //_SD_USE_INT_
{
#ifndef _SD_USE_INT_
if ((SD->INTSTS & SDH_INTSTS_BLKDIF_Msk) && (!(SD->CTL & SDH_CTL_DOEN_Msk))) {
SD->INTSTS = SDH_INTSTS_BLKDIF_Msk;
break;
}
#endif
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
if ((SD->INTSTS & SDH_INTSTS_CRCIF_Msk) != 0) { // check CRC
SD->INTSTS = SDH_INTSTS_CRCIF_Msk;
return SD_CRC_ERROR;
}
}
loop = u32SecCount % 255;
if (loop != 0) {
#ifdef _SD_USE_INT_
_sd_SDDataReady = FALSE;
#endif //_SD_USE_INT_
reg = (SD->CTL & 0xff00c080) | (loop << 16);
if (!bIsSendCmd) {
SD->CTL = reg|(25<<8)|(SDH_CTL_COEN_Msk | SDH_CTL_RIEN_Msk | SDH_CTL_DOEN_Msk);
bIsSendCmd = TRUE;
} else
SD->CTL = reg | SDH_CTL_DOEN_Msk;
#ifdef _SD_USE_INT_
while(!_sd_SDDataReady)
#else
while(1)
#endif //_SD_USE_INT_
{
#ifndef _SD_USE_INT_
if ((SD->INTSTS & SDH_INTSTS_BLKDIF_Msk) && (!(SD->CTL & SDH_CTL_DOEN_Msk))) {
SD->INTSTS = SDH_INTSTS_BLKDIF_Msk;
break;
}
#endif
if (pSD->IsCardInsert == FALSE)
return SD_NO_SD_CARD;
}
if ((SD->INTSTS & SDH_INTSTS_CRCIF_Msk) != 0) { // check CRC
SD->INTSTS = SDH_INTSTS_CRCIF_Msk;
return SD_CRC_ERROR;
}
}
SD->INTSTS = SDH_INTSTS_CRCIF_Msk;
if (SD_SDCmdAndRsp(pSD, 12, 0, 0)) { // stop command
return SD_CRC7_ERROR;
}
SD_CheckRB();
SD_SDCommand(pSD, 7, 0);
SD->CTL |= SDH_CTL_CLK8OEN_Msk;
while(SD->CTL & SDH_CTL_CLK8OEN_Msk);
return Successful;
}
/*@}*/ /* end of group NUC472_442_SD_EXPORTED_FUNCTIONS */
/*@}*/ /* end of group NUC472_442_SD_Driver */
/*@}*/ /* end of group NUC472_442_Device_Driver */
/*** (C) COPYRIGHT 2013 Nuvoton Technology Corp. ***/