mbed-os/connectivity/drivers/mbedtls/TARGET_Samsung/sha/sha256_alt.c

462 lines
14 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2020 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/****************************************************************************
*
* Copyright 2020 Samsung Electronics All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
* either express or implied. See the License for the specific
* language governing permissions and limitations under the License.
*
****************************************************************************/
#include "mbedtls/sha256.h"
#include "mbedtls/platform_util.h"
#if defined(MBEDTLS_SHA256_C)
#if defined(MBEDTLS_SHA256_ALT)
#include "mb_cmd_hash.h"
#define SHA256_VALIDATE_RET(cond) \
MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_SHA256_BAD_INPUT_DATA )
#define SHA256_VALIDATE(cond) MBEDTLS_INTERNAL_VALIDATE( cond )
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) \
do { \
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ); \
} while( 0 )
#endif
#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) \
do { \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
} while( 0 )
#endif
#include "string.h"
#include "sss_common.h"
#include "mb_cmd_system.h"
int mbedtls_sha256_sw_finish_ret(mbedtls_sha256_context *ctx, unsigned char output[32]);
int mbedtls_sha256_sw_update_ret(mbedtls_sha256_context *ctx, const unsigned char *input, size_t ilen);
void mbedtls_sha256_init(mbedtls_sha256_context *ctx)
{
memset(ctx, 0, sizeof(mbedtls_sha256_context));
}
void mbedtls_sha256_free(mbedtls_sha256_context *ctx)
{
if (ctx == NULL) {
return;
}
memset(ctx, 0, sizeof(mbedtls_sha256_context));
}
void mbedtls_sha256_clone(mbedtls_sha256_context *dst,
const mbedtls_sha256_context *src)
{
// Corner case: Destination/source contexts are the same
if (dst == src) {
return;
}
SHA256_VALIDATE(dst != NULL);
SHA256_VALIDATE(src != NULL);
memcpy(dst, src, sizeof(mbedtls_sha256_context));
}
/*
* SHA-256 context setup
*/
int mbedtls_sha256_starts_ret(mbedtls_sha256_context *ctx, int is224)
{
SHA256_VALIDATE_RET(ctx != NULL);
SHA256_VALIDATE_RET(is224 == 0 || is224 == 1);
ctx->total[0] = 0;
ctx->total[1] = 0;
if (is224 == 0) {
ctx->is224 = 0;
memset(ctx, 0, sizeof(mbedtls_sha256_context));
} else {
/* SHA-224 */
ctx->state[0] = 0xC1059ED8;
ctx->state[1] = 0x367CD507;
ctx->state[2] = 0x3070DD17;
ctx->state[3] = 0xF70E5939;
ctx->state[4] = 0xFFC00B31;
ctx->state[5] = 0x68581511;
ctx->state[6] = 0x64F98FA7;
ctx->state[7] = 0xBEFA4FA4;
ctx->is224 = is224;
}
// No any of H/W access, always return OK
return 0;
}
/*
* SHA-256 process buffer
*/
int mbedtls_sha256_update_ret(mbedtls_sha256_context *ctx, const unsigned char *input, size_t ilen)
{
if (ctx->is224) {
mbedtls_sha256_sw_update_ret(ctx, input, ilen);
} else {
if (ilen > MAX_MB_HASH_BLOCK_BLEN || (ctx->totals + ilen) > MAX_MB_HASH_BLOCK_BLEN || ctx->totals > MAX_MB_HASH_BLOCK_BLEN) {
// H/W SHA has limitation to seperated API with oversized message.
// fall back to S/W SHA-256
if (ctx->totals == 0 || ctx->hw == 1) {
ctx->total[0] = 0;
ctx->total[1] = 0;
/* SHA-256 */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
ctx->totals += ilen;
//in case, H/W -> S/W fallback case
if ((ctx->totals + ilen) > MAX_MB_HASH_BLOCK_BLEN && ctx->hw == 1) {
mbedtls_sha512_sw_update_ret(ctx, ctx->sbuf, ctx->pstMessage.u32DataByteLen);
}
ctx->hw = 0;
mbedtls_sha256_sw_update_ret(ctx, input, ilen);
} else { //less than MAX_MB_HASH_BLOCK_BLEN size will handle with H/W
// SHA-256 handle by SSS H/W
memcpy(ctx->sbuf + ctx->pstMessage.u32DataByteLen, input, ilen);
ctx->pstMessage.u32DataByteLen += ilen;
ctx->totals += ilen; //in case the block size increased incrementally. (3, 20, 256..)
}
}
// No any of H/W access, always return OK
return 0;
}
/*
* SHA-256 final digest
*/
int mbedtls_sha256_finish_ret(mbedtls_sha256_context *ctx, unsigned char output[32])
{
if (ctx->is224 || ctx->totals > MAX_MB_HASH_BLOCK_BLEN) {
mbedtls_sha256_sw_finish_ret(ctx, output);
} else {
int ret = FAIL;
unsigned int object_id;
unsigned int block_byte_len;
ctx->pstDigest.pu08Data = output; /* assign output buffer */
stOCTET_STRING stHASH_Input;
//! step 0 : clear Mailbox
ret = mb_system_clear(CLEAR_TYPE_MAILBOX);
if (ret != SSSR_SUCCESS) {
return ret;
}
//! assign hash_byte_len to compare returned result from sss_fw after hash operation
object_id = OID_SHA2_256;
block_byte_len = 64;
//! step 1 : set message length parameter to SSS
ret = mb_hash_init(&ctx->pstMessage, object_id);
if (ret != SSSR_SUCCESS) {
return ret;
}
//! step 2 : set message block to SSS
ctx->pstMessage.pu08Data = ctx->sbuf;
stHASH_Input.pu08Data = ctx->pstMessage.pu08Data;
stHASH_Input.u32DataByteLen = ctx->pstMessage.u32DataByteLen;
ret = mb_hash_update(&stHASH_Input, block_byte_len);
if (ret != SSSR_SUCCESS) {
return ret;
}
//! step 3 : get hash result from SSS
ret = mb_hash_final(&stHASH_Input, &ctx->pstDigest);
if (ret != SSSR_SUCCESS) {
return ret;
}
}
return 0;
}
static const uint32_t K[] = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
#define SHR(x,n) (((x) & 0xFFFFFFFF) >> (n))
#define ROTR(x,n) (SHR(x,n) | ((x) << (32 - (n))))
#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
#define F0(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
#define F1(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define R(t) \
( \
W[t] = S1(W[(t) - 2]) + W[(t) - 7] + \
S0(W[(t) - 15]) + W[(t) - 16] \
)
#define P(a,b,c,d,e,f,g,h,x,K) \
do \
{ \
temp1 = (h) + S3(e) + F1((e),(f),(g)) + (K) + (x); \
temp2 = S2(a) + F0((a),(b),(c)); \
(d) += temp1; (h) = temp1 + temp2; \
} while( 0 )
int mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx,
const unsigned char data[64])
{
uint32_t temp1, temp2, W[64];
uint32_t A[8];
unsigned int i;
SHA256_VALIDATE_RET(ctx != NULL);
SHA256_VALIDATE_RET((const unsigned char *)data != NULL);
for (i = 0; i < 8; i++) {
A[i] = ctx->state[i];
}
#if defined(MBEDTLS_SHA256_SMALLER)
for (i = 0; i < 64; i++) {
if (i < 16) {
GET_UINT32_BE(W[i], data, 4 * i);
} else {
R(i);
}
P(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i]);
temp1 = A[7];
A[7] = A[6];
A[6] = A[5];
A[5] = A[4];
A[4] = A[3];
A[3] = A[2];
A[2] = A[1];
A[1] = A[0];
A[0] = temp1;
}
#else /* MBEDTLS_SHA256_SMALLER */
for (i = 0; i < 16; i++) {
GET_UINT32_BE(W[i], data, 4 * i);
}
for (i = 0; i < 16; i += 8) {
P(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i + 0], K[i + 0]);
P(A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], W[i + 1], K[i + 1]);
P(A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], W[i + 2], K[i + 2]);
P(A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], W[i + 3], K[i + 3]);
P(A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], W[i + 4], K[i + 4]);
P(A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], W[i + 5], K[i + 5]);
P(A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], W[i + 6], K[i + 6]);
P(A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], W[i + 7], K[i + 7]);
}
for (i = 16; i < 64; i += 8) {
P(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], R(i + 0), K[i + 0]);
P(A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], R(i + 1), K[i + 1]);
P(A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], R(i + 2), K[i + 2]);
P(A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], R(i + 3), K[i + 3]);
P(A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], R(i + 4), K[i + 4]);
P(A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], R(i + 5), K[i + 5]);
P(A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], R(i + 6), K[i + 6]);
P(A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], R(i + 7), K[i + 7]);
}
#endif /* MBEDTLS_SHA256_SMALLER */
for (i = 0; i < 8; i++) {
ctx->state[i] += A[i];
}
return 0;
}
int mbedtls_sha256_sw_finish_ret(mbedtls_sha256_context *ctx, unsigned char output[32])
{
int ret;
uint32_t used;
uint32_t high, low;
SHA256_VALIDATE_RET(ctx != NULL);
SHA256_VALIDATE_RET((unsigned char *)output != NULL);
/*
* Add padding: 0x80 then 0x00 until 8 bytes remain for the length
*/
used = ctx->total[0] & 0x3F;
ctx->buffer[used++] = 0x80;
if (used <= 56) {
/* Enough room for padding + length in current block */
memset(ctx->buffer + used, 0, 56 - used);
} else {
/* We'll need an extra block */
memset(ctx->buffer + used, 0, 64 - used);
if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
return (ret);
}
memset(ctx->buffer, 0, 56);
}
/*
* Add message length
*/
high = (ctx->total[0] >> 29)
| (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
PUT_UINT32_BE(high, ctx->buffer, 56);
PUT_UINT32_BE(low, ctx->buffer, 60);
if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
return (ret);
}
/*
* Output final state
*/
PUT_UINT32_BE(ctx->state[0], output, 0);
PUT_UINT32_BE(ctx->state[1], output, 4);
PUT_UINT32_BE(ctx->state[2], output, 8);
PUT_UINT32_BE(ctx->state[3], output, 12);
PUT_UINT32_BE(ctx->state[4], output, 16);
PUT_UINT32_BE(ctx->state[5], output, 20);
PUT_UINT32_BE(ctx->state[6], output, 24);
if (ctx->is224 == 0) {
PUT_UINT32_BE(ctx->state[7], output, 28);
}
return 0;
}
int mbedtls_sha256_sw_update_ret(mbedtls_sha256_context *ctx, const unsigned char *input, size_t ilen)
{
//process SW SHA224
int ret;
size_t fill;
uint32_t left;
SHA256_VALIDATE_RET(ctx != NULL);
SHA256_VALIDATE_RET(ilen == 0 || input != NULL);
if (ilen == 0) {
return (0);
}
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < (uint32_t) ilen) {
ctx->total[1]++;
}
if (left && ilen >= fill) {
memcpy((void *)(ctx->buffer + left), input, fill);
if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
return (ret);
}
input += fill;
ilen -= fill;
left = 0;
}
while (ilen >= 64) {
if ((ret = mbedtls_internal_sha256_process(ctx, input)) != 0) {
return (ret);
}
input += 64;
ilen -= 64;
}
if (ilen > 0) {
memcpy((void *)(ctx->buffer + left), input, ilen);
}
return 0;
}
#endif /* MBEDTLS_SHA256_ALT */
#endif /* MBEDTLS_SHA256_C */