mbed-os/targets/TARGET_Freescale/TARGET_KLXX/pwmout_api.c

160 lines
4.1 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "clk_freqs.h"
#include "PeripheralPins.h"
static float pwm_clock;
void pwmout_init(pwmout_t *obj, PinName pin)
{
// determine the channel
PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
MBED_ASSERT(pwm != (PWMName)NC);
uint32_t clkdiv = 0;
float clkval;
#if defined(TARGET_KL43Z)
if (mcgirc_frequency()) {
SIM->SOPT2 |= SIM_SOPT2_TPMSRC(3); // Clock source: MCGIRCLK
clkval = mcgirc_frequency() / 1000000.0f;
} else {
SIM->SOPT2 |= SIM_SOPT2_TPMSRC(1); // Clock source: IRC48M
clkval = CPU_INT_IRC_CLK_HZ / 1000000.0f;
}
#else
if (mcgpllfll_frequency()) {
SIM->SOPT2 |= SIM_SOPT2_TPMSRC(1); // Clock source: MCGFLLCLK or MCGPLLCLK
clkval = mcgpllfll_frequency() / 1000000.0f;
} else {
SIM->SOPT2 |= SIM_SOPT2_TPMSRC(2); // Clock source: ExtOsc
clkval = extosc_frequency() / 1000000.0f;
}
#endif
while (clkval > 1) {
clkdiv++;
clkval /= 2.0;
if (clkdiv == 7) {
break;
}
}
pwm_clock = clkval;
unsigned int port = (unsigned int)pin >> PORT_SHIFT;
unsigned int tpm_n = (pwm >> TPM_SHIFT);
unsigned int ch_n = (pwm & 0xFF);
SIM->SCGC5 |= 1 << (SIM_SCGC5_PORTA_SHIFT + port);
SIM->SCGC6 |= 1 << (SIM_SCGC6_TPM0_SHIFT + tpm_n);
TPM_Type *tpm = (TPM_Type *)(TPM0_BASE + 0x1000 * tpm_n);
tpm->SC = TPM_SC_CMOD(1) | TPM_SC_PS(clkdiv); // (clock)MHz / clkdiv ~= (0.75)MHz
tpm->CONTROLS[ch_n].CnSC = (TPM_CnSC_MSB_MASK | TPM_CnSC_ELSB_MASK); /* No Interrupts; High True pulses on Edge Aligned PWM */
obj->CnV = &tpm->CONTROLS[ch_n].CnV;
obj->MOD = &tpm->MOD;
obj->CNT = &tpm->CNT;
// default to 20ms: standard for servos, and fine for e.g. brightness control
pwmout_period_ms(obj, 20);
pwmout_write(obj, 0);
// Wire pinout
pinmap_pinout(pin, PinMap_PWM);
}
void pwmout_free(pwmout_t *obj) {}
void pwmout_write(pwmout_t *obj, float value)
{
if (value < 0.0) {
value = 0.0;
} else if (value > 1.0) {
value = 1.0;
}
*obj->CnV = (uint32_t)((float)(*obj->MOD + 1) * value);
*obj->CNT = 0;
}
float pwmout_read(pwmout_t *obj)
{
float v = (float)(*obj->CnV) / (float)(*obj->MOD + 1);
return (v > 1.0) ? (1.0) : (v);
}
void pwmout_period(pwmout_t *obj, float seconds)
{
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t *obj, int ms)
{
pwmout_period_us(obj, ms * 1000);
}
// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t *obj, int us)
{
float dc = pwmout_read(obj);
*obj->MOD = (uint32_t)(pwm_clock * (float)us) - 1;
pwmout_write(obj, dc);
}
int pwmout_read_period_us(pwmout_t *obj)
{
uint32_t pwm_period = 0;
if (pwm_clock > 0) {
pwm_period = ((*obj->MOD) + 1) / pwm_clock;
}
return pwm_period;
}
void pwmout_pulsewidth(pwmout_t *obj, float seconds)
{
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t *obj, int ms)
{
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t *obj, int us)
{
*obj->CnV = (uint32_t)(pwm_clock * (float)us);
}
int pwmout_read_pulsewidth_us(pwmout_t *obj)
{
uint32_t pwm_pulsewidth = 0;
if (pwm_clock > 0) {
pwm_pulsewidth = (*obj->CnV) / pwm_clock;
}
return pwm_pulsewidth;
}
const PinMap *pwmout_pinmap()
{
return PinMap_PWM;
}