/* * Copyright (c) 2014-2015 ARM Limited. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "randLIB.h" #include "platform/arm_hal_random.h" /** * This library is made for getting random numbers for timing needs in * protocols, plus to generate dynamic ports, random IDs etc. * * **not safe to use for security or cryptographic operations.** * * Base implementation is a pseudo-RNG, but may also use a system RNG. * Replay of sequence by reseeding is not possible. * * Base pseudo-RNG is the xoroshiro128+ generator by Marsaglia, Blackman and * Vigna: * * http://xoroshiro.di.unimi.it/ * * Certainly not the fastest for 32-bit or smaller platforms, but speed * is not critical. None of the long operations in the core are actually hard, * unlike the divisions and multiplies in the utility functions below, where we * do try to keep the operations narrow. */ /* On some platforms, read from a system RNG, rather than use our own */ /* RANDLIB_PRNG disables this and forces use of the PRNG (useful for test only?) */ #ifndef RANDLIB_PRNG #ifdef __linux #define RANDOM_DEVICE "/dev/urandom" #endif #endif // RANDLIB_PRNG /* RAM usage - 16 bytes of state (or a FILE * pointer and underlying FILE, which * will include a buffer) */ #ifdef RANDOM_DEVICE #include static FILE *random_file; #else static uint64_t state[2]; #endif #ifdef RANDLIB_PRNG void randLIB_reset(void) { state[0] = 0; state[1] = 0; } #endif #ifndef RANDOM_DEVICE static inline uint64_t rol(uint64_t n, int bits) { return (n << bits) | (n >> (64 - bits)); } /* Lower-quality generator used only for initial seeding, if platform * isn't returning multiple seeds itself. Multiplies are rather heavy * for lower-end platforms, but this is initialisation only. */ static uint64_t splitmix64(uint64_t *seed) { uint64_t z = (*seed += UINT64_C(0x9E3779B97F4A7C15)); z = (z ^ (z >> 30)) * UINT64_C(0xBF58476D1CE4E5B9); z = (z ^ (z >> 27)) * UINT64_C(0x94D049BB133111EB); return z ^ (z >> 31); } #endif // RANDOM_DEVICE void randLIB_seed_random(void) { #ifdef RANDOM_DEVICE if (!random_file) { random_file = fopen(RANDOM_DEVICE, "rb"); } #else arm_random_module_init(); /* We exclusive-OR with the current state, in case they make this call * multiple times,or in case someone has called randLIB_add_seed before * this. We don't want to potentially lose entropy. */ /* Spell out expressions so we get known ordering of 4 seed calls */ uint64_t s = (uint64_t) arm_random_seed_get() << 32; state[0] ^= (s | arm_random_seed_get()); s = (uint64_t) arm_random_seed_get() << 32; state[1] ^= s | arm_random_seed_get(); /* This check serves to both to stir the state if the platform is returning * constant seeding values, and to avoid the illegal all-zero state. */ if (state[0] == state[1]) { randLIB_add_seed(state[0]); } #endif // RANDOM_DEVICE } void randLIB_add_seed(uint64_t seed) { #ifndef RANDOM_DEVICE state[0] ^= splitmix64(&seed); state[1] ^= splitmix64(&seed); /* This is absolutely necessary, but I challenge you to add it to line coverage */ if (state[1] == 0 && state[0] == 0) { state[0] = 1; } #else (void)seed; #endif } uint8_t randLIB_get_8bit(void) { uint64_t r = randLIB_get_64bit(); return (uint8_t)(r >> 56); } uint16_t randLIB_get_16bit(void) { uint64_t r = randLIB_get_64bit(); return (uint16_t)(r >> 48); } uint32_t randLIB_get_32bit(void) { uint64_t r = randLIB_get_64bit(); return (uint32_t)(r >> 32); } uint64_t randLIB_get_64bit(void) { #ifdef RANDOM_DEVICE if (!random_file) { return 0; } uint64_t result; if (fread(&result, sizeof result, 1, random_file) != 1) { result = 0; } return result; #else const uint64_t s0 = state[0]; uint64_t s1 = state[1]; const uint64_t result = s0 + s1; s1 ^= s0; state[0] = rol(s0, 55) ^ s1 ^ (s1 << 14); state[1] = rol(s1, 36); return result; #endif } void *randLIB_get_n_bytes_random(void *ptr, uint8_t count) { uint8_t *data_ptr = ptr; uint64_t r = 0; for (uint_fast8_t i = 0; i < count; i++) { /* Take 8 bytes at a time */ if (i % 8 == 0) { r = randLIB_get_64bit(); } else { r >>= 8; } data_ptr[i] = (uint8_t) r; } return data_ptr; } uint16_t randLIB_get_random_in_range(uint16_t min, uint16_t max) { /* This special case is potentially common, particularly in this routine's * first user (Trickle), so worth catching immediately */ if (min == max) { return min; } #if UINT_MAX >= 0xFFFFFFFF const unsigned int rand_max = 0xFFFFFFFFu; // will use rand32 #else const unsigned int rand_max = 0xFFFFu; // will use rand16 /* 16-bit arithmetic below fails in this extreme case; we can optimise it */ if (max - min == 0xFFFF) { return randLIB_get_16bit(); } #endif /* We get rand_max values from rand16 or 32() in the range [0..rand_max-1], and * need to divvy them up into the number of values we need. And reroll any * odd values off the end as we insist every value having equal chance. * * Using the range [0..rand_max-1] saves long division on the band * calculation - it means rand_max ends up always being rerolled. * * Eg, range(1,2), rand_max = 0xFFFF: * We have 2 bands of size 0x7FFF (0xFFFF/2). * * We roll: 0x0000..0x7FFE -> 1 * 0x7FFF..0xFFFD -> 2 * 0xFFFE..0xFFFF -> reroll * (calculating band size as 0x10000/2 would have avoided the reroll cases) * * Eg, range(1,3), rand_max = 0xFFFFFFFF: * We have 3 bands of size 0x55555555 (0xFFFFFFFF/3). * * We roll: 0x00000000..0x555555554 -> 1 * 0x55555555..0xAAAAAAAA9 -> 2 * 0xAAAAAAAA..0xFFFFFFFFE -> 3 * 0xFFFFFFFF -> reroll * * (Bias problem clearly pretty insignificant there, but gets worse as * range increases). */ const unsigned int values_needed = max + 1 - min; /* Avoid the need for long division, at the expense of fractionally * increasing reroll chance. */ const unsigned int band_size = rand_max / values_needed; const unsigned int top_of_bands = band_size * values_needed; unsigned int result; do { #if UINT_MAX > 0xFFFF result = randLIB_get_32bit(); #else result = randLIB_get_16bit(); #endif } while (result >= top_of_bands); return min + (uint16_t)(result / band_size); } uint32_t randLIB_randomise_base(uint32_t base, uint16_t min_factor, uint16_t max_factor) { uint16_t random_factor = randLIB_get_random_in_range(min_factor, max_factor); /* 32x16-bit long multiplication, to get 48-bit result */ uint32_t hi = (base >> 16) * random_factor; uint32_t lo = (base & 0xFFFF) * random_factor; /* Add halves, and take top 32 bits of 48-bit result */ uint32_t res = hi + (lo >> 16); /* Randomisation factor is *2^15, so need to shift up 1 more bit, avoiding overflow */ if (res & 0x80000000) { res = 0xFFFFFFFF; } else { res = (res << 1) | ((lo >> 15) & 1); } return res; }