/* mbed Microcontroller Library * Copyright (c) 2017, ARM Limited * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #if DEVICE_QSPI #include "qspi_api.h" #include "mbed_error.h" #include "cmsis.h" #include "pinmap.h" #include "PeripheralPins.h" /* Max amount of flash size is 4Gbytes */ /* hence 2^(31+1), then FLASH_SIZE_DEFAULT = 1<<31 */ #define QSPI_FLASH_SIZE_DEFAULT 0x80000000 void qspi_prepare_command(const qspi_command_t *command, QSPI_CommandTypeDef *st_command) { // TODO: shift these around to get more dynamic mapping switch (command->instruction.bus_width) { case QSPI_CFG_BUS_SINGLE: st_command->InstructionMode = QSPI_INSTRUCTION_1_LINE; break; case QSPI_CFG_BUS_DUAL: st_command->InstructionMode = QSPI_INSTRUCTION_2_LINES; break; case QSPI_CFG_BUS_QUAD: st_command->InstructionMode = QSPI_INSTRUCTION_4_LINES; break; default: st_command->InstructionMode = QSPI_INSTRUCTION_NONE; break; } st_command->Instruction = command->instruction.value; st_command->DummyCycles = command->dummy_count, // these are target specific settings, use default values st_command->SIOOMode = QSPI_SIOO_INST_EVERY_CMD; st_command->DdrMode = QSPI_DDR_MODE_DISABLE; st_command->DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY; switch (command->address.bus_width) { case QSPI_CFG_BUS_SINGLE: st_command->AddressMode = QSPI_ADDRESS_1_LINE; break; case QSPI_CFG_BUS_DUAL: st_command->AddressMode = QSPI_ADDRESS_2_LINES; break; case QSPI_CFG_BUS_QUAD: st_command->AddressMode = QSPI_ADDRESS_4_LINES; break; default: st_command->AddressMode = QSPI_ADDRESS_NONE; break; } if (command->address.disabled == true) { st_command->AddressMode = QSPI_ADDRESS_NONE; st_command->AddressSize = 0; } else { st_command->Address = command->address.value; /* command->address.size needs to be shifted by QUADSPI_CCR_ADSIZE_Pos */ st_command->AddressSize = (command->address.size << QUADSPI_CCR_ADSIZE_Pos) & QUADSPI_CCR_ADSIZE_Msk; } switch (command->alt.bus_width) { case QSPI_CFG_BUS_SINGLE: st_command->AlternateByteMode = QSPI_ALTERNATE_BYTES_1_LINE; break; case QSPI_CFG_BUS_DUAL: st_command->AlternateByteMode = QSPI_ALTERNATE_BYTES_2_LINES; break; case QSPI_CFG_BUS_QUAD: st_command->AlternateByteMode = QSPI_ALTERNATE_BYTES_4_LINES; break; default: st_command->AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE; break; } if (command->alt.disabled == true) { st_command->AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE; st_command->AlternateBytesSize = 0; } else { st_command->AlternateBytes = command->alt.value; /* command->AlternateBytesSize needs to be shifted by QUADSPI_CCR_ABSIZE_Pos */ st_command->AlternateBytesSize = (command->alt.size << QUADSPI_CCR_ABSIZE_Pos) & QUADSPI_CCR_ABSIZE_Msk; st_command->AlternateBytesSize = command->alt.size; } switch (command->data.bus_width) { case QSPI_CFG_BUS_SINGLE: st_command->DataMode = QSPI_DATA_1_LINE; break; case QSPI_CFG_BUS_DUAL: st_command->DataMode = QSPI_DATA_2_LINES; break; case QSPI_CFG_BUS_QUAD: st_command->DataMode = QSPI_DATA_4_LINES; break; default: st_command->DataMode = QSPI_DATA_NONE; break; } st_command->NbData = 0; } qspi_status_t qspi_init(qspi_t *obj, PinName io0, PinName io1, PinName io2, PinName io3, PinName sclk, PinName ssel, uint32_t hz, uint8_t mode) { // Enable interface clock for QSPI __HAL_RCC_QSPI_CLK_ENABLE(); // Reset QSPI __HAL_RCC_QSPI_FORCE_RESET(); __HAL_RCC_QSPI_RELEASE_RESET(); // Reset handle internal state obj->handle.State = HAL_QSPI_STATE_RESET; obj->handle.Lock = HAL_UNLOCKED; // Set default QSPI handle values obj->handle.Init.ClockPrescaler = 1; obj->handle.Init.FifoThreshold = 1; obj->handle.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE; obj->handle.Init.FlashSize = POSITION_VAL(QSPI_FLASH_SIZE_DEFAULT) - 1; obj->handle.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_5_CYCLE; obj->handle.Init.ClockMode = QSPI_CLOCK_MODE_0; #ifdef QSPI_DUALFLASH_ENABLE obj->handle.Init.FlashID = QSPI_FLASH_ID_1; obj->handle.Init.DualFlash = QSPI_DUALFLASH_DISABLE; #endif obj->handle.Init.ClockMode = mode == 0 ? QSPI_CLOCK_MODE_0 : QSPI_CLOCK_MODE_3; QSPIName qspiio0name = (QSPIName)pinmap_peripheral(io0, PinMap_QSPI_DATA); QSPIName qspiio1name = (QSPIName)pinmap_peripheral(io1, PinMap_QSPI_DATA); QSPIName qspiio2name = (QSPIName)pinmap_peripheral(io2, PinMap_QSPI_DATA); QSPIName qspiio3name = (QSPIName)pinmap_peripheral(io3, PinMap_QSPI_DATA); QSPIName qspiclkname = (QSPIName)pinmap_peripheral(sclk, PinMap_QSPI_SCLK); QSPIName qspisselname = (QSPIName)pinmap_peripheral(ssel, PinMap_QSPI_SSEL); QSPIName qspi_data_first = (QSPIName)pinmap_merge(qspiio0name, qspiio1name); QSPIName qspi_data_second = (QSPIName)pinmap_merge(qspiio2name, qspiio3name); QSPIName qspi_data_third = (QSPIName)pinmap_merge(qspiclkname, qspisselname); if (qspi_data_first != qspi_data_second || qspi_data_second != qspi_data_third || qspi_data_first != qspi_data_third) { return QSPI_STATUS_INVALID_PARAMETER; } // tested all combinations, take first obj->handle.Instance = (QUADSPI_TypeDef *)qspi_data_first; // pinmap for pins (enable clock) obj->io0 = io0; pinmap_pinout(io0, PinMap_QSPI_DATA); obj->io1 = io1; pinmap_pinout(io1, PinMap_QSPI_DATA); obj->io2 = io2; pinmap_pinout(io2, PinMap_QSPI_DATA); obj->io3 = io3; pinmap_pinout(io3, PinMap_QSPI_DATA); obj->sclk = sclk; pinmap_pinout(sclk, PinMap_QSPI_SCLK); obj->ssel = ssel; pinmap_pinout(ssel, PinMap_QSPI_SSEL); if (HAL_QSPI_Init(&obj->handle) != HAL_OK) { return QSPI_STATUS_ERROR; } qspi_frequency(obj, hz); return QSPI_STATUS_OK; } qspi_status_t qspi_free(qspi_t *obj) { if(HAL_QSPI_DeInit(&obj->handle) != HAL_OK) { return QSPI_STATUS_ERROR; } // Reset QSPI __HAL_RCC_QSPI_FORCE_RESET(); __HAL_RCC_QSPI_RELEASE_RESET(); // Disable interface clock for QSPI __HAL_RCC_QSPI_CLK_DISABLE(); // Configure GPIOs pin_function(obj->io0, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->io1, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->io2, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->io3, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); (void)(obj); return QSPI_STATUS_OK; } qspi_status_t qspi_frequency(qspi_t *obj, int hz) { qspi_status_t status = QSPI_STATUS_OK; // HCLK drives QSPI int div = HAL_RCC_GetHCLKFreq() / hz; if (div > 256 || div < 1) { status = QSPI_STATUS_INVALID_PARAMETER; return status; } obj->handle.Init.ClockPrescaler = div - 1; if (HAL_QSPI_Init(&obj->handle) != HAL_OK) { status = QSPI_STATUS_ERROR; } return status; } qspi_status_t qspi_write(qspi_t *obj, const qspi_command_t *command, const void *data, size_t *length) { QSPI_CommandTypeDef st_command; qspi_prepare_command(command, &st_command); st_command.NbData = *length; qspi_status_t status = QSPI_STATUS_OK; if (HAL_QSPI_Command(&obj->handle, &st_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) { status = QSPI_STATUS_ERROR; return status; } if (HAL_QSPI_Transmit(&obj->handle, (uint8_t *)data, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) { status = QSPI_STATUS_ERROR; } return status; } qspi_status_t qspi_read(qspi_t *obj, const qspi_command_t *command, void *data, size_t *length) { QSPI_CommandTypeDef st_command; qspi_prepare_command(command, &st_command); st_command.NbData = *length; qspi_status_t status = QSPI_STATUS_OK; if (HAL_QSPI_Command(&obj->handle, &st_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) { status = QSPI_STATUS_ERROR; return status; } if (HAL_QSPI_Receive(&obj->handle, data, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) { status = QSPI_STATUS_ERROR; } return status; } qspi_status_t qspi_command_transfer(qspi_t *obj, const qspi_command_t *command, const void *tx_data, size_t tx_size, void *rx_data, size_t rx_size) { qspi_status_t status = QSPI_STATUS_OK; if ((tx_data == NULL || tx_size == 0) && (rx_data == NULL || rx_size == 0)) { // only command, no rx or tx QSPI_CommandTypeDef st_command; qspi_prepare_command(command, &st_command); st_command.NbData = 1; st_command.DataMode = QSPI_DATA_NONE; /* Instruction only */ if (HAL_QSPI_Command(&obj->handle, &st_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) { status = QSPI_STATUS_ERROR; return status; } } else { // often just read a register, check if we need to transmit anything prior reading if (tx_data != NULL && tx_size) { size_t tx_length = tx_size; status = qspi_write(obj, command, tx_data, &tx_length); if (status != QSPI_STATUS_OK) { return status; } } if (rx_data != NULL && rx_size) { size_t rx_length = rx_size; status = qspi_read(obj, command, rx_data, &rx_length); } } return status; } #endif /** @}*/