/* mbed Microcontroller Library * Copyright (c) 2015-2016 Nuvoton * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "spi_api.h" #if DEVICE_SPI #include "cmsis.h" #include "pinmap.h" #include "PeripheralPins.h" #include "nu_modutil.h" #include "nu_miscutil.h" #include "nu_bitutil.h" #if DEVICE_SPI_ASYNCH #include "dma_api.h" #include "dma.h" #endif #define NU_SPI_FRAME_MIN 8 #define NU_SPI_FRAME_MAX 32 #define NU_SPI_FIFO_DEPTH 8 struct nu_spi_var { #if DEVICE_SPI_ASYNCH uint8_t pdma_perp_tx; uint8_t pdma_perp_rx; #endif }; static struct nu_spi_var spi0_var = { #if DEVICE_SPI_ASYNCH .pdma_perp_tx = PDMA_SPI0_TX, .pdma_perp_rx = PDMA_SPI0_RX #endif }; static struct nu_spi_var spi1_var = { #if DEVICE_SPI_ASYNCH .pdma_perp_tx = PDMA_SPI1_TX, .pdma_perp_rx = PDMA_SPI1_RX #endif }; static struct nu_spi_var spi2_var = { #if DEVICE_SPI_ASYNCH .pdma_perp_tx = PDMA_SPI2_TX, .pdma_perp_rx = PDMA_SPI2_RX #endif }; /* Synchronous version of SPI_ENABLE()/SPI_DISABLE() macros * * The SPI peripheral clock is asynchronous with the system clock. In order to make sure the SPI * control logic is enabled/disabled, this bit indicates the real status of SPI controller. * * NOTE: All configurations shall be ready before calling SPI_ENABLE_SYNC(). * NOTE: Before changing the configurations of SPIx_CTL, SPIx_CLKDIV, SPIx_SSCTL and SPIx_FIFOCTL registers, * user shall clear the SPIEN (SPIx_CTL[0]) and confirm the SPIENSTS (SPIx_STATUS[15]) is 0 * (by SPI_DISABLE_SYNC here). */ __STATIC_INLINE void SPI_ENABLE_SYNC(SPI_T *spi_base) { if (! (spi_base->CTL & SPI_CTL_SPIEN_Msk)) { SPI_ENABLE(spi_base); } while (! (spi_base->STATUS & SPI_STATUS_SPIENSTS_Msk)); } __STATIC_INLINE void SPI_DISABLE_SYNC(SPI_T *spi_base) { if (spi_base->CTL & SPI_CTL_SPIEN_Msk) { // NOTE: SPI H/W may get out of state without the busy check. while (SPI_IS_BUSY(spi_base)); SPI_DISABLE(spi_base); } while (spi_base->STATUS & SPI_STATUS_SPIENSTS_Msk); } #if DEVICE_SPI_ASYNCH static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable); static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable); static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit); static uint32_t spi_master_read_asynch(spi_t *obj); static uint32_t spi_event_check(spi_t *obj); static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable); static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length); static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx); static uint8_t spi_get_data_width(spi_t *obj); static int spi_is_tx_complete(spi_t *obj); static int spi_is_rx_complete(spi_t *obj); static int spi_writeable(spi_t * obj); static int spi_readable(spi_t * obj); static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma); static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma); #endif static uint32_t spi_modinit_mask = 0; static const struct nu_modinit_s spi_modinit_tab[] = { {SPI_0, SPI0_MODULE, CLK_CLKSEL2_SPI0SEL_PCLK0, MODULE_NoMsk, SPI0_RST, SPI0_IRQn, &spi0_var}, {SPI_1, SPI1_MODULE, CLK_CLKSEL2_SPI1SEL_PCLK1, MODULE_NoMsk, SPI1_RST, SPI1_IRQn, &spi1_var}, {SPI_2, SPI2_MODULE, CLK_CLKSEL2_SPI2SEL_PCLK0, MODULE_NoMsk, SPI2_RST, SPI2_IRQn, &spi2_var}, {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL} }; void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // Determine which SPI_x the pins are used for uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI); uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO); uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK); uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL); uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso); uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel); obj->spi.spi = (SPIName) pinmap_merge(spi_data, spi_cntl); MBED_ASSERT((int)obj->spi.spi != NC); const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->spi.spi); obj->spi.pin_mosi = mosi; obj->spi.pin_miso = miso; obj->spi.pin_sclk = sclk; obj->spi.pin_ssel = ssel; pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); pinmap_pinout(ssel, PinMap_SPI_SSEL); // Select IP clock source CLK_SetModuleClock(modinit->clkidx, modinit->clksrc, modinit->clkdiv); // Enable IP clock CLK_EnableModuleClock(modinit->clkidx); // Reset this module SYS_ResetModule(modinit->rsetidx); #if DEVICE_SPI_ASYNCH obj->spi.dma_usage = DMA_USAGE_NEVER; obj->spi.event = 0; obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; /* NOTE: We use vector to judge if asynchronous transfer is on-going (spi_active). * At initial time, asynchronous transfer is not on-going and so vector must * be cleared to zero for correct judgement. */ NVIC_SetVector(modinit->irq_n, 0); #endif // Mark this module to be inited. int i = modinit - spi_modinit_tab; spi_modinit_mask |= 1 << i; } void spi_free(spi_t *obj) { #if DEVICE_SPI_ASYNCH if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { dma_channel_free(obj->spi.dma_chn_id_tx); obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; } if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { dma_channel_free(obj->spi.dma_chn_id_rx); obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; } #endif SPI_Close((SPI_T *) NU_MODBASE(obj->spi.spi)); const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->spi.spi); SPI_DisableInt(((SPI_T *) NU_MODBASE(obj->spi.spi)), (SPI_FIFO_RXOV_INT_MASK | SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK)); NVIC_DisableIRQ(modinit->irq_n); // Disable IP clock CLK_DisableModuleClock(modinit->clkidx); // Mark this module to be deinited. int i = modinit - spi_modinit_tab; spi_modinit_mask &= ~(1 << i); // Free up pins gpio_set(obj->spi.pin_mosi); gpio_set(obj->spi.pin_miso); gpio_set(obj->spi.pin_sclk); gpio_set(obj->spi.pin_ssel); obj->spi.pin_mosi = NC; obj->spi.pin_miso = NC; obj->spi.pin_sclk = NC; obj->spi.pin_ssel = NC; } void spi_format(spi_t *obj, int bits, int mode, int slave) { MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX); SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); SPI_DISABLE_SYNC(spi_base); SPI_Open(spi_base, slave ? SPI_SLAVE : SPI_MASTER, (mode == 0) ? SPI_MODE_0 : (mode == 1) ? SPI_MODE_1 : (mode == 2) ? SPI_MODE_2 : SPI_MODE_3, bits, SPI_GetBusClock(spi_base)); // NOTE: Hardcode to be MSB first. SPI_SET_MSB_FIRST(spi_base); if (! slave) { // Master if (obj->spi.pin_ssel != NC) { // Configure SS as low active. SPI_EnableAutoSS(spi_base, SPI_SS, SPI_SS_ACTIVE_LOW); } else { SPI_DisableAutoSS(spi_base); } } else { // Slave // Configure SS as low active. spi_base->SSCTL &= ~SPI_SSCTL_SSACTPOL_Msk; } /* NOTE: M451's/M480's/M2351's SPI_Open() will enable SPI transfer (SPI_CTL_SPIEN_Msk). * We cannot use SPI_CTL_SPIEN_Msk for judgement of spi_active(). * Judge with vector instead. */ } void spi_frequency(spi_t *obj, int hz) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); SPI_DISABLE_SYNC(spi_base); SPI_SetBusClock((SPI_T *) NU_MODBASE(obj->spi.spi), hz); } int spi_master_write(spi_t *obj, int value) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); PinName spi_miso = obj->spi.pin_miso; SPI_ENABLE_SYNC(spi_base); /* Wait for TX FIFO not full */ while(! spi_writeable(obj)); SPI_WRITE_TX(spi_base, value); /* Make inter-frame (SPI data frame) delay match configured suspend interval * in no MISO case * * This API requires data write/read simultaneously. However, it can enlarge * the inter-frame delay. The data flow for one call of this API would be: * 1. Write data to TX FIFO when it is not full * 2. Write delay consisting of TX FIFO to TX Shift Register... * 3. Actual data transfer on SPI bus * 4. Read delay consisting of RX FIFO from RX Shift Register... * 5. Read data from RX FIFO when it is not empty * Among above, S2&S4 contribute to the inter-frame delay. * * To favor no MISO case, we skip S4&S5. Thus, S2 can overlap with S3 and doesn't * contribute to the inter-frame delay when data is written successively. The solution * can cause RX FIFO overrun. Ignore it. */ int value2 = -1; if (spi_miso != NC) { /* Wait for RX FIFO not empty */ while (! spi_readable(obj)); value2 = SPI_READ_RX(spi_base); } /* We don't call SPI_DISABLE_SYNC here for performance. */ return value2; } int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, char write_fill) { int total = (tx_length > rx_length) ? tx_length : rx_length; for (int i = 0; i < total; i++) { char out = (i < tx_length) ? tx_buffer[i] : write_fill; char in = spi_master_write(obj, out); if (i < rx_length) { rx_buffer[i] = in; } } return total; } const PinMap *spi_master_mosi_pinmap() { return PinMap_SPI_MOSI; } const PinMap *spi_master_miso_pinmap() { return PinMap_SPI_MISO; } const PinMap *spi_master_clk_pinmap() { return PinMap_SPI_SCLK; } const PinMap *spi_master_cs_pinmap() { return PinMap_SPI_SSEL; } const PinMap *spi_slave_mosi_pinmap() { return PinMap_SPI_MOSI; } const PinMap *spi_slave_miso_pinmap() { return PinMap_SPI_MISO; } const PinMap *spi_slave_clk_pinmap() { return PinMap_SPI_SCLK; } const PinMap *spi_slave_cs_pinmap() { return PinMap_SPI_SSEL; } #if DEVICE_SPISLAVE int spi_slave_receive(spi_t *obj) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); SPI_ENABLE_SYNC(spi_base); return spi_readable(obj); }; int spi_slave_read(spi_t *obj) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); SPI_ENABLE_SYNC(spi_base); // Wait for rx buffer full while (! spi_readable(obj)); int value = SPI_READ_RX(spi_base); return value; } void spi_slave_write(spi_t *obj, int value) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); SPI_ENABLE_SYNC(spi_base); // Wait for tx buffer empty while(! spi_writeable(obj)); SPI_WRITE_TX(spi_base, value); } #endif #if DEVICE_SPI_ASYNCH void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); SPI_SET_DATA_WIDTH(spi_base, bit_width); obj->spi.dma_usage = hint; spi_check_dma_usage(&obj->spi.dma_usage, &obj->spi.dma_chn_id_tx, &obj->spi.dma_chn_id_rx); uint32_t data_width = spi_get_data_width(obj); // Conditions to go DMA way: // (1) No DMA support for non-8 multiple data width. // (2) tx length >= rx length. Otherwise, as tx DMA is done, no bus activity for remaining rx. if ((data_width % 8) || (tx_length < rx_length)) { obj->spi.dma_usage = DMA_USAGE_NEVER; dma_channel_free(obj->spi.dma_chn_id_tx); obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; dma_channel_free(obj->spi.dma_chn_id_rx); obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; } // SPI IRQ is necessary for both interrupt way and DMA way spi_enable_event(obj, event, 1); spi_buffer_set(obj, tx, tx_length, rx, rx_length); SPI_ENABLE_SYNC(spi_base); // Initialize total SPI transfer frames obj->spi.txrx_rmn = NU_MAX(tx_length, rx_length); if (obj->spi.dma_usage == DMA_USAGE_NEVER) { // Interrupt way spi_master_write_asynch(obj, NU_SPI_FIFO_DEPTH / 2); spi_enable_vector_interrupt(obj, handler, 1); spi_master_enable_interrupt(obj, 1); } else { // DMA way const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->spi.spi); PDMA_T *pdma_base = dma_modbase(); // Configure tx DMA pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel PDMA_SetTransferMode(obj->spi.dma_chn_id_tx, ((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA 0, // Scatter-gather disabled 0); // Scatter-gather descriptor address PDMA_SetTransferCnt(obj->spi.dma_chn_id_tx, (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, tx_length); PDMA_SetTransferAddr(obj->spi.dma_chn_id_tx, (uint32_t) tx, // NOTE: // NUC472: End of source address // M451: Start of source address PDMA_SAR_INC, // Source address incremental (uint32_t) &spi_base->TX, // Destination address PDMA_DAR_FIX); // Destination address fixed PDMA_SetBurstType(obj->spi.dma_chn_id_tx, PDMA_REQ_SINGLE, // Single mode 0); // Burst size PDMA_EnableInt(obj->spi.dma_chn_id_tx, PDMA_INT_TRANS_DONE); // Interrupt type // Register DMA event handler dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL); // Configure rx DMA pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel PDMA_SetTransferMode(obj->spi.dma_chn_id_rx, ((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA 0, // Scatter-gather disabled 0); // Scatter-gather descriptor address PDMA_SetTransferCnt(obj->spi.dma_chn_id_rx, (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, rx_length); PDMA_SetTransferAddr(obj->spi.dma_chn_id_rx, (uint32_t) &spi_base->RX, // Source address PDMA_SAR_FIX, // Source address fixed (uint32_t) rx, // NOTE: // NUC472: End of destination address // M451: Start of destination address PDMA_DAR_INC); // Destination address incremental PDMA_SetBurstType(obj->spi.dma_chn_id_rx, PDMA_REQ_SINGLE, // Single mode 0); // Burst size PDMA_EnableInt(obj->spi.dma_chn_id_rx, PDMA_INT_TRANS_DONE); // Interrupt type // Register DMA event handler dma_set_handler(obj->spi.dma_chn_id_rx, (uint32_t) spi_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL); /* Start tx/rx DMA transfer * * If we have both PDMA and SPI interrupts enabled and PDMA priority is lower than SPI priority, * we would trap in SPI interrupt handler endlessly with the sequence: * * 1. PDMA TX transfer done interrupt occurs and is well handled. * 2. SPI RX FIFO threshold interrupt occurs. Trap here because PDMA RX transfer done interrupt doesn't get handled. * 3. PDMA RX transfer done interrupt occurs but it cannot be handled due to above. * * To fix it, we don't enable SPI TX/RX threshold interrupts but keep SPI vector handler set to be called * in PDMA TX/RX transfer done interrupt handlers (spi_dma_handler_tx/spi_dma_handler_rx). */ NVIC_SetVector(modinit->irq_n, handler); /* Order to enable PDMA TX/RX functions * * H/W spec: In SPI Master mode with full duplex transfer, if both TX and RX PDMA functions are * enabled, RX PDMA function cannot be enabled prior to TX PDMA function. User can enable * TX PDMA function firstly or enable both functions simultaneously. * Per real test, it is safer to start RX PDMA first and then TX PDMA. Otherwise, receive FIFO is * subject to overflow by TX DMA. * * With the above conflicts, we enable PDMA TX/RX functions simultaneously. */ spi_base->PDMACTL |= (SPI_PDMACTL_TXPDMAEN_Msk | SPI_PDMACTL_RXPDMAEN_Msk); /* Don't enable SPI TX/RX threshold interrupts as commented above */ } } /** * Abort an SPI transfer * This is a helper function for event handling. When any of the events listed occurs, the HAL will abort any ongoing * transfers * @param[in] obj The SPI peripheral to stop */ void spi_abort_asynch(spi_t *obj) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); PDMA_T *pdma_base = dma_modbase(); if (obj->spi.dma_usage != DMA_USAGE_NEVER) { // Receive FIFO Overrun in case of tx length > rx length on DMA way if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) { spi_base->STATUS = SPI_STATUS_RXOVIF_Msk; } if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { PDMA_DisableInt(obj->spi.dma_chn_id_tx, PDMA_INT_TRANS_DONE); // NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx); } SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { PDMA_DisableInt(obj->spi.dma_chn_id_rx, PDMA_INT_TRANS_DONE); // NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx); } SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); } // Necessary for both interrupt way and DMA way spi_enable_vector_interrupt(obj, 0, 0); spi_master_enable_interrupt(obj, 0); /* Necessary for accessing FIFOCTL below */ SPI_DISABLE_SYNC(spi_base); SPI_ClearRxFIFO(spi_base); SPI_ClearTxFIFO(spi_base); } /** * Handle the SPI interrupt * Read frames until the RX FIFO is empty. Write at most as many frames as were read. This way, * it is unlikely that the RX FIFO will overflow. * @param[in] obj The SPI peripheral that generated the interrupt * @return */ uint32_t spi_irq_handler_asynch(spi_t *obj) { // Check for SPI events uint32_t event = spi_event_check(obj); if (event) { spi_abort_asynch(obj); } return (obj->spi.event & event) | ((event & SPI_EVENT_COMPLETE) ? SPI_EVENT_INTERNAL_TRANSFER_COMPLETE : 0); } uint8_t spi_active(spi_t *obj) { const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->spi.spi); /* Vector will be cleared when asynchronous transfer is finished or aborted. Use it to judge if asynchronous transfer is on-going. */ uint32_t vec = NVIC_GetVector(modinit->irq_n); return vec ? 1 : 0; } static int spi_writeable(spi_t * obj) { // Receive FIFO must not be full to avoid receive FIFO overflow on next transmit/receive return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))); } static int spi_readable(spi_t * obj) { return ! SPI_GET_RX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))); } static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable) { obj->spi.event &= ~SPI_EVENT_ALL; obj->spi.event |= (event & SPI_EVENT_ALL); if (event & SPI_EVENT_RX_OVERFLOW) { SPI_EnableInt((SPI_T *) NU_MODBASE(obj->spi.spi), SPI_FIFO_RXOV_INT_MASK); } } static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable) { const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->spi.spi); if (enable) { NVIC_SetVector(modinit->irq_n, handler); NVIC_EnableIRQ(modinit->irq_n); } else { NVIC_DisableIRQ(modinit->irq_n); NVIC_SetVector(modinit->irq_n, 0); } } static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); if (enable) { // For SPI0, it could be 0 ~ 7. For SPI1 and SPI2, it could be 0 ~ 3. if (spi_base == (SPI_T *) SPI0_BASE) { SPI_SetFIFO(spi_base, 4, 4); } else { SPI_SetFIFO(spi_base, 2, 2); } // Enable tx/rx FIFO threshold interrupt SPI_EnableInt(spi_base, SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK); } else { SPI_DisableInt(spi_base, SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK); } } static uint32_t spi_event_check(spi_t *obj) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); uint32_t event = 0; if (obj->spi.dma_usage == DMA_USAGE_NEVER) { uint32_t n_rec = spi_master_read_asynch(obj); spi_master_write_asynch(obj, n_rec); } if (spi_is_tx_complete(obj) && spi_is_rx_complete(obj)) { event |= SPI_EVENT_COMPLETE; } // Receive FIFO Overrun if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) { spi_base->STATUS = SPI_STATUS_RXOVIF_Msk; // In case of tx length > rx length on DMA way if (obj->spi.dma_usage == DMA_USAGE_NEVER) { event |= SPI_EVENT_RX_OVERFLOW; } } // Receive Time-Out if (spi_base->STATUS & SPI_STATUS_RXTOIF_Msk) { spi_base->STATUS = SPI_STATUS_RXTOIF_Msk; // Not using this IF. Just clear it. } // Transmit FIFO Under-Run if (spi_base->STATUS & SPI_STATUS_TXUFIF_Msk) { spi_base->STATUS = SPI_STATUS_TXUFIF_Msk; event |= SPI_EVENT_ERROR; } return event; } /** * Send words from the SPI TX buffer until the send limit is reached or the TX FIFO is full * tx_limit is provided to ensure that the number of SPI frames (words) in flight can be managed. * @param[in] obj The SPI object on which to operate * @param[in] tx_limit The maximum number of words to send * @return The number of SPI words that have been transfered */ static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit) { uint32_t n_words = 0; uint8_t data_width = spi_get_data_width(obj); uint8_t bytes_per_word = (data_width + 7) / 8; uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos; SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); while (obj->spi.txrx_rmn && spi_writeable(obj)) { if (spi_is_tx_complete(obj)) { // Transmit dummy as transmit buffer is empty SPI_WRITE_TX(spi_base, 0); } else { switch (bytes_per_word) { case 4: SPI_WRITE_TX(spi_base, nu_get32_le(tx)); tx += 4; break; case 2: SPI_WRITE_TX(spi_base, nu_get16_le(tx)); tx += 2; break; case 1: SPI_WRITE_TX(spi_base, *((uint8_t *) tx)); tx += 1; break; } obj->tx_buff.pos ++; } n_words ++; obj->spi.txrx_rmn --; } //Return the number of words that have been sent return n_words; } /** * Read SPI words out of the RX FIFO * Continues reading words out of the RX FIFO until the following condition is met: * o There are no more words in the FIFO * OR BOTH OF: * o At least as many words as the TX buffer have been received * o At least as many words as the RX buffer have been received * This way, RX overflows are not generated when the TX buffer size exceeds the RX buffer size * @param[in] obj The SPI object on which to operate * @return Returns the number of words extracted from the RX FIFO */ static uint32_t spi_master_read_asynch(spi_t *obj) { uint32_t n_words = 0; uint8_t data_width = spi_get_data_width(obj); uint8_t bytes_per_word = (data_width + 7) / 8; uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos; SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); while (spi_readable(obj)) { if (spi_is_rx_complete(obj)) { // Disregard as receive buffer is full SPI_READ_RX(spi_base); } else { switch (bytes_per_word) { case 4: { uint32_t val = SPI_READ_RX(spi_base); nu_set32_le(rx, val); rx += 4; break; } case 2: { uint16_t val = SPI_READ_RX(spi_base); nu_set16_le(rx, val); rx += 2; break; } case 1: *rx ++ = SPI_READ_RX(spi_base); break; } obj->rx_buff.pos ++; } n_words ++; } // Return the number of words received return n_words; } static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length) { obj->tx_buff.buffer = (void *) tx; obj->tx_buff.length = tx_length; obj->tx_buff.pos = 0; obj->tx_buff.width = spi_get_data_width(obj); obj->rx_buff.buffer = rx; obj->rx_buff.length = rx_length; obj->rx_buff.pos = 0; obj->rx_buff.width = spi_get_data_width(obj); } static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx) { if (*dma_usage != DMA_USAGE_NEVER) { if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS) { *dma_ch_tx = dma_channel_allocate(DMA_CAP_NONE); } if (*dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) { *dma_ch_rx = dma_channel_allocate(DMA_CAP_NONE); } if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS || *dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) { *dma_usage = DMA_USAGE_NEVER; } } if (*dma_usage == DMA_USAGE_NEVER) { dma_channel_free(*dma_ch_tx); *dma_ch_tx = DMA_ERROR_OUT_OF_CHANNELS; dma_channel_free(*dma_ch_rx); *dma_ch_rx = DMA_ERROR_OUT_OF_CHANNELS; } } static uint8_t spi_get_data_width(spi_t *obj) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); uint32_t data_width = ((spi_base->CTL & SPI_CTL_DWIDTH_Msk) >> SPI_CTL_DWIDTH_Pos); if (data_width == 0) { data_width = 32; } return data_width; } static int spi_is_tx_complete(spi_t *obj) { return (obj->tx_buff.pos == obj->tx_buff.length); } static int spi_is_rx_complete(spi_t *obj) { return (obj->rx_buff.pos == obj->rx_buff.length); } static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma) { spi_t *obj = (spi_t *) id; // TODO: Pass this error to caller if (event_dma & DMA_EVENT_ABORT) { } // Expect SPI IRQ will catch this transfer done event if (event_dma & DMA_EVENT_TRANSFER_DONE) { obj->tx_buff.pos = obj->tx_buff.length; } // TODO: Pass this error to caller if (event_dma & DMA_EVENT_TIMEOUT) { } const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->spi.spi); void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n); vec(); } static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma) { spi_t *obj = (spi_t *) id; // TODO: Pass this error to caller if (event_dma & DMA_EVENT_ABORT) { } // Expect SPI IRQ will catch this transfer done event if (event_dma & DMA_EVENT_TRANSFER_DONE) { obj->rx_buff.pos = obj->rx_buff.length; } // TODO: Pass this error to caller if (event_dma & DMA_EVENT_TIMEOUT) { } const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->spi.spi); void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n); vec(); } #endif #endif