/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2017, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #if DEVICE_LOWPOWERTIMER #include "rtc_api_hal.h" #if MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM LPTIM_HandleTypeDef LptimHandle; volatile uint32_t lp_SlaveCounter = 0; volatile uint32_t lp_oc_int_part = 0; volatile uint16_t lp_TickPeriod_us; volatile uint8_t lp_Fired = 0; static void LPTIM1_IRQHandler(void); static void (*irq_handler)(void); void lp_ticker_init(void) { /* Check if LPTIM is already configured */ #if (TARGET_STM32L0) if (READ_BIT(RCC->APB1ENR, RCC_APB1ENR_LPTIM1EN) != RESET) { return; } #else if (__HAL_RCC_LPTIM1_IS_CLK_ENABLED()) { return; } #endif RCC_PeriphCLKInitTypeDef RCC_PeriphCLKInitStruct = {0}; RCC_OscInitTypeDef RCC_OscInitStruct = {0}; #if MBED_CONF_TARGET_LSE_AVAILABLE /* Enable LSE clock */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; /* Select the LSE clock as LPTIM peripheral clock */ RCC_PeriphCLKInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LPTIM1; #if (TARGET_STM32L0) RCC_PeriphCLKInitStruct.LptimClockSelection = RCC_LPTIM1CLKSOURCE_LSE; #else RCC_PeriphCLKInitStruct.Lptim1ClockSelection = RCC_LPTIM1CLKSOURCE_LSE; #endif #else /* MBED_CONF_TARGET_LSE_AVAILABLE */ /* Enable LSI clock */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; /* Select the LSI clock as LPTIM peripheral clock */ RCC_PeriphCLKInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LPTIM1; #if (TARGET_STM32L0) RCC_PeriphCLKInitStruct.LptimClockSelection = RCC_LPTIM1CLKSOURCE_LSI; #else RCC_PeriphCLKInitStruct.Lptim1ClockSelection = RCC_LPTIM1CLKSOURCE_LSI; #endif #endif /* MBED_CONF_TARGET_LSE_AVAILABLE */ if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { error("HAL_RCC_OscConfig ERROR\n"); return; } if (HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphCLKInitStruct) != HAL_OK) { error("HAL_RCCEx_PeriphCLKConfig ERROR\n"); return; } __HAL_RCC_LPTIM1_CLK_ENABLE(); __HAL_RCC_LPTIM1_FORCE_RESET(); __HAL_RCC_LPTIM1_RELEASE_RESET(); /* Initialize the LPTIM peripheral */ LptimHandle.Instance = LPTIM1; LptimHandle.State = HAL_LPTIM_STATE_RESET; LptimHandle.Init.Clock.Source = LPTIM_CLOCKSOURCE_APBCLOCK_LPOSC; /* Prescaler impact: tick period = Prescaler division factor / LPTIM clock Example with LPTIM clock = 32768 Hz LSE Prescaler = LPTIM_PRESCALER_DIV1 => lp_TickPeriod_us = 31us => 2s with 16b timer Prescaler = LPTIM_PRESCALER_DIV2 => lp_TickPeriod_us = 61us => 4s with 16b timer Prescaler = LPTIM_PRESCALER_DIV4 => lp_TickPeriod_us = 122us => 8s with 16b timer Prescaler = LPTIM_PRESCALER_DIV8 => lp_TickPeriod_us = 244us => 16s with 16b timer Prescaler = LPTIM_PRESCALER_DIV16 => lp_TickPeriod_us = 488us => 32s with 16b timer Prescaler = LPTIM_PRESCALER_DIV32 => lp_TickPeriod_us = 976us => 64s with 16b timer Prescaler = LPTIM_PRESCALER_DIV64 => lp_TickPeriod_us = 1.9ms => 128s with 16b timer Prescaler = LPTIM_PRESCALER_DIV128 => lp_TickPeriod_us = 3.9ms => 256s with 16b timer */ LptimHandle.Init.Clock.Prescaler = LPTIM_PRESCALER_DIV2; lp_TickPeriod_us = 2 * 1000000 / RTC_CLOCK; LptimHandle.Init.Trigger.Source = LPTIM_TRIGSOURCE_SOFTWARE; LptimHandle.Init.OutputPolarity = LPTIM_OUTPUTPOLARITY_HIGH; LptimHandle.Init.UpdateMode = LPTIM_UPDATE_IMMEDIATE; LptimHandle.Init.CounterSource = LPTIM_COUNTERSOURCE_INTERNAL; #if (TARGET_STM32L4) LptimHandle.Init.Input1Source = LPTIM_INPUT1SOURCE_GPIO; LptimHandle.Init.Input2Source = LPTIM_INPUT2SOURCE_GPIO; #endif /* TARGET_STM32L4 */ if (HAL_LPTIM_Init(&LptimHandle) != HAL_OK) { error("HAL_LPTIM_Init ERROR\n"); return; } NVIC_SetVector(LPTIM1_IRQn, (uint32_t)LPTIM1_IRQHandler); NVIC_EnableIRQ(LPTIM1_IRQn); #if !(TARGET_STM32L4) /* EXTI lines are not configured by default */ __HAL_LPTIM_WAKEUPTIMER_EXTI_ENABLE_IT(); __HAL_LPTIM_WAKEUPTIMER_EXTI_ENABLE_RISING_EDGE(); #endif __HAL_LPTIM_ENABLE_IT(&LptimHandle, LPTIM_IT_ARRM); __HAL_LPTIM_ENABLE_IT(&LptimHandle, LPTIM_IT_CMPM); __HAL_LPTIM_ENABLE_IT(&LptimHandle, LPTIM_IT_CMPOK); HAL_LPTIM_Counter_Start(&LptimHandle, 0xFFFF); } static void LPTIM1_IRQHandler(void) { LptimHandle.Instance = LPTIM1; if (lp_Fired) { lp_Fired = 0; if (irq_handler) { irq_handler(); } } /* Compare match interrupt */ if (__HAL_LPTIM_GET_FLAG(&LptimHandle, LPTIM_FLAG_CMPM) != RESET) { if (__HAL_LPTIM_GET_IT_SOURCE(&LptimHandle, LPTIM_IT_CMPM) != RESET) { /* Clear Compare match flag */ __HAL_LPTIM_CLEAR_FLAG(&LptimHandle, LPTIM_FLAG_CMPM); if (lp_oc_int_part > 0) { lp_oc_int_part--; } else { if (irq_handler) { irq_handler(); } } } } /* Compare write interrupt */ if (__HAL_LPTIM_GET_FLAG(&LptimHandle, LPTIM_FLAG_CMPOK) != RESET) { if (__HAL_LPTIM_GET_IT_SOURCE(&LptimHandle, LPTIM_IT_CMPOK) != RESET) { /* Clear Compare write flag */ __HAL_LPTIM_CLEAR_FLAG(&LptimHandle, LPTIM_FLAG_CMPOK); } } /* Autoreload match interrupt */ if (__HAL_LPTIM_GET_FLAG(&LptimHandle, LPTIM_FLAG_ARRM) != RESET) { if (__HAL_LPTIM_GET_IT_SOURCE(&LptimHandle, LPTIM_IT_ARRM) != RESET) { /* Clear Autoreload match flag */ __HAL_LPTIM_CLEAR_FLAG(&LptimHandle, LPTIM_FLAG_ARRM); lp_SlaveCounter++; } } #if !(TARGET_STM32L4) __HAL_LPTIM_WAKEUPTIMER_EXTI_CLEAR_FLAG(); #endif } uint32_t lp_ticker_read_TickCounter(void) { uint16_t cntH_old, cntH, cntL; LptimHandle.Instance = LPTIM1; /* same algo as us_ticker_read in us_ticker_16b.c */ do { cntH_old = lp_SlaveCounter; if (__HAL_LPTIM_GET_FLAG(&LptimHandle, LPTIM_FLAG_ARRM) == SET) { cntH_old += 1; } cntL = LPTIM1->CNT; cntH = lp_SlaveCounter; if (__HAL_LPTIM_GET_FLAG(&LptimHandle, LPTIM_FLAG_ARRM) == SET) { cntH += 1; } } while (cntH_old != cntH); uint32_t lp_time = (uint32_t)(cntH << 16 | cntL); return lp_time; } uint32_t lp_ticker_read(void) { lp_ticker_init(); return lp_ticker_read_TickCounter() * (uint32_t)lp_TickPeriod_us; } void lp_ticker_set_interrupt(timestamp_t timestamp) { // Disable IRQs core_util_critical_section_enter(); uint32_t timestamp_TickCounter = timestamp / (uint32_t)lp_TickPeriod_us; LptimHandle.Instance = LPTIM1; irq_handler = (void (*)(void))lp_ticker_irq_handler; __HAL_LPTIM_CLEAR_FLAG(&LptimHandle, LPTIM_FLAG_CMPOK); __HAL_LPTIM_CLEAR_FLAG(&LptimHandle, LPTIM_FLAG_CMPM); __HAL_LPTIM_COMPARE_SET(&LptimHandle, timestamp_TickCounter & 0xFFFF); /* CMPOK is set by hardware to inform application that the APB bus write operation to the LPTIM_CMP register has been successfully completed */ while (__HAL_LPTIM_GET_FLAG(&LptimHandle, LPTIM_FLAG_CMPOK) == RESET) { } /* same algo as us_ticker_set_interrupt in us_ticker_16b.c */ uint32_t current_time_TickCounter = lp_ticker_read_TickCounter(); uint32_t delta = timestamp_TickCounter - current_time_TickCounter; lp_oc_int_part = (delta - 1) >> 16; if ( ((delta - 1) & 0xFFFF) >= 0x8000 && __HAL_LPTIM_GET_FLAG(&LptimHandle, LPTIM_FLAG_CMPM) == SET ) { ++lp_oc_int_part; } // Enable IRQs core_util_critical_section_exit(); } void lp_ticker_fire_interrupt(void) { lp_Fired = 1; NVIC_SetPendingIRQ(LPTIM1_IRQn); } void lp_ticker_disable_interrupt(void) { LptimHandle.Instance = LPTIM1; __HAL_LPTIM_DISABLE_IT(&LptimHandle, LPTIM_IT_CMPM); } void lp_ticker_clear_interrupt(void) { LptimHandle.Instance = LPTIM1; __HAL_LPTIM_CLEAR_FLAG(&LptimHandle, LPTIM_FLAG_CMPM); } #else /* MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM */ void lp_ticker_init(void) { rtc_init(); } uint32_t lp_ticker_read(void) { uint32_t usecs = rtc_read_us(); return usecs; } void lp_ticker_set_interrupt(timestamp_t timestamp) { uint32_t delta; delta = timestamp - lp_ticker_read(); rtc_set_wake_up_timer(delta); } void lp_ticker_fire_interrupt(void) { NVIC_SetPendingIRQ(RTC_WKUP_IRQn); } void lp_ticker_disable_interrupt(void) { rtc_deactivate_wake_up_timer(); } void lp_ticker_clear_interrupt(void) { NVIC_ClearPendingIRQ(RTC_WKUP_IRQn); } #endif /* MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM */ #endif /* DEVICE_LOWPOWERTIMER */